题目内容

已知函数f(x)=aln(x+1)+(x+1)2,其中,a为实常数且a≠0.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)若f(x)≥
a
2
对任意x∈(-1,+∞)恒成立,求实数a的取值范围.
(Ⅰ)f(x)=
a
x+1
+2(x+1)=
2(x+1)2+a
x+1
(2分)
因为f(x)的定义域为(-1,+∞),所以x+1>0
当a>0时,f′(x)>0,此时f(x)的单调增区间为(-1,+∞)(4分)
当a<0时,2(x+1)2>-a,即x>-1+
-
a
2
时f′(x)>0,
此时f(x)的单增区间为(-1+
-
a
2
,+∞)
(6分)
(Ⅱ)由(Ⅰ)知,当a>0时,f(x)在(-1,+∞)单调增,而当x→0时,f(x)→-∞
所以此时f(x)无最小值,不合题意(7分)
当a<0时,f(x)在(-1,-1+
-
a
2
)
上单调减,在(-1+
-
a
2
,+∞)
上增,
所以f(x)≥
a
2
恒成立,即f(-1+
-
a
2
)≥
a
2
?aln
-
a
2
+(
-
a
2
)2
a
2
(10分)
?ln
-
a
2
≤1
,得0<
-
a
2
≤e?-2e2≤a<0.
(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网