题目内容
| 3 |
| 7 |
| 9 |
| 19 |
an=2n-1
an=2n-1
.分析:由框图所示S=S+
可得S=
+
+…+
,利用裂项可求和=
(
-
),由n=3,S=
(
-
)=
,n=9,S=
(
-
)=
,结合已知可知公差d=2,可求通项公式
| 1 |
| aiai+1 |
| 1 |
| a1a1 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a4 |
| 3 |
| 7 |
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a10 |
| 9 |
| 19 |
解答:解:由框图所示S=S+
可得
S=
+
+…+
=
(
-
+
-
+…+
-
)
=
(
-
)
∵n=3,S=
(
-
)=
n=9,S=
(
-
)=
两式相减可得,
-
=(
-
)d
∴
=(
-
)d,结合已知可知公差d=2,
∴a4=7,a10=19
∴an=a4+(n-4)×2=2n-1
故答案为:an=2n-1.
| 1 |
| aiai+1 |
S=
| 1 |
| a1a1 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| an+1 |
∵n=3,S=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a4 |
| 3 |
| 7 |
n=9,S=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a10 |
| 9 |
| 19 |
两式相减可得,
| 1 |
| a4 |
| 1 |
| a10 |
| 9 |
| 19 |
| 3 |
| 7 |
∴
| 6d |
| a4a10 |
| 9 |
| 19 |
| 3 |
| 7 |
∴a4=7,a10=19
∴an=a4+(n-4)×2=2n-1
故答案为:an=2n-1.
点评:本题主要考查了循环结构、利用框图给出数列的和的递推公式,裂项法求数列的和,等差数列通项公式的应用,属于知识的简单综合运用.
练习册系列答案
相关题目