题目内容
已知点F,A分别是椭圆A.
B.
C.
D.
【答案】分析:首先根据
推断出FB⊥AB,进而根据勾股定理可知|FB|2+|AB|2=(a+c)2,把进而整理关于a和c的方程求得
即离心率e的值.
解答:解解:∵
∴FB⊥AB
∴|FB|2+|AB|2=(a+c)2,即b2+c2+a2+b2=(a+c)2,整理得2ac-2b2=0即ac=a2-c2
等号两边同时除以a2得
+
-1=0,即e2+e-1=0
求得e=
∵e>0
∴e=
故选B
点评:本题主要考查了椭圆的简单性质.要求学生熟练掌握椭圆的标准方程中a,b和c的关系以及椭圆的图象.
解答:解解:∵
∴FB⊥AB
∴|FB|2+|AB|2=(a+c)2,即b2+c2+a2+b2=(a+c)2,整理得2ac-2b2=0即ac=a2-c2
等号两边同时除以a2得
求得e=
∵e>0
∴e=
故选B
点评:本题主要考查了椭圆的简单性质.要求学生熟练掌握椭圆的标准方程中a,b和c的关系以及椭圆的图象.
练习册系列答案
相关题目