题目内容
已知数列{an}满足an=n•2n,则其前n项和是( )
| A.(n-1)2n+1-2 | B.(n-1)2n+1+2 | C.(n-1)2n-2 | D.(n-1)2n+2 |
∵an=n•2n,设其前n项和为Sn,
当n=1时,a1=S1=2,可排除A,C;
当n=2时,a2=2×22=8,S2=a1+a2=10,排除D;
故选B.
当n=1时,a1=S1=2,可排除A,C;
当n=2时,a2=2×22=8,S2=a1+a2=10,排除D;
故选B.
练习册系列答案
相关题目