题目内容

已知x>0,y>0,lg2x+lg8y=lg2,则
1
x
+
1
3y
的最小值是(  )
A、4
B、2
2
C、2
D、2
3
分析:由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;
解答:解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,
又由lg2x+lg8y=lg2,
则x+3y=1,
进而由基本不等式的性质可得,
1
x
+
1
3y
=(x+3y)(
1
x
+
1
3y
)=2+
3y
x
+
x
3y
≥4,
故选A.
点评:本题考查基本不等式的性质与对数的运算,注意基本不等式常见的变形形式与运用,如本题中,1的代换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网