题目内容

已知数列{an}的前n项和为Sn=3+2an,求数列{an}的通项公式.
分析:利用“当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1”即可得出.
解答:解:当n=1时,a1=S1=3+2a1,解得a1=-3.
当n≥2时,an=Sn-Sn-1=3+2an-(3+2an-1),化为an=2an-1
∴数列{an}是等比数列,首项为-3,公比为2.
an=-3×2n-1
点评:本题考查了利用“当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1”求数列的通项公式的方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网