题目内容
(2013•天津模拟)已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Dn;
(Ⅲ)设cn=an•sin2
-bn•cos2
(n∈N*),求数列{cn}的前2n项和T2n.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Dn;
(Ⅲ)设cn=an•sin2
| nπ |
| 2 |
| nπ |
| 2 |
分析:(Ⅰ)利用数列递推式,再写一式,两式相减,可求求数列{an}的通项公式;利用点P(bn,bn+1) (n∈N*)在直线y=x+2上,可得{bn}是等差数列,公差为2,首项b1=1,从而可求{bn}的通项公式;
(Ⅱ)利用错位相减法,可求数列{an•bn}的前n项和Dn;
(Ⅲ)利用分组求和法,可求数列{cn}的前2n项和T2n.
(Ⅱ)利用错位相减法,可求数列{an•bn}的前n项和Dn;
(Ⅲ)利用分组求和法,可求数列{cn}的前2n项和T2n.
解答:解:(Ⅰ)当n=1,a1=2…(1分)
当n≥2时,an=Sn-Sn-1=2an-2an-1…(2分)
∴an=2an-1(n≥2),∴{an}是等比数列,公比为2,首项a1=2
∴an=2n…(3分)
又点P(bn,bn+1) (n∈N*)在直线y=x+2上,∴bn+1=bn+2,
∴{bn}是等差数列,公差为2,首项b1=1,∴bn=2n-1…(5分)
(Ⅱ)∵an•bn=(2n-1)×2n
∴Dn=1×21+3×22+5×23+7×24+…(2n-3)×2n-1+(2n-1)×2n①
2Dn=1×22+3×23+5×24+7×25+…(2n-3)×2n+(2n-1)×2n+1②
①-②得-Dn=1×21+2×22+2×23+2×24+…2×2n-(2n-1)×2n+1…(7分)
=2+2×
-(2n-1)×2n+1=2n+1(3-2n)-6…(8分)
Dn=(2n-3)2n+1+6…(9分)
(Ⅲ)cn=
…(11分)
T2n=(a1+a3+…+a2n-1)-(b2+b4+…b2n)
=2+23+…+22n-1-[3+7+…+(4n-1)]=
-2n2-n…(13分)
当n≥2时,an=Sn-Sn-1=2an-2an-1…(2分)
∴an=2an-1(n≥2),∴{an}是等比数列,公比为2,首项a1=2
∴an=2n…(3分)
又点P(bn,bn+1) (n∈N*)在直线y=x+2上,∴bn+1=bn+2,
∴{bn}是等差数列,公差为2,首项b1=1,∴bn=2n-1…(5分)
(Ⅱ)∵an•bn=(2n-1)×2n
∴Dn=1×21+3×22+5×23+7×24+…(2n-3)×2n-1+(2n-1)×2n①
2Dn=1×22+3×23+5×24+7×25+…(2n-3)×2n+(2n-1)×2n+1②
①-②得-Dn=1×21+2×22+2×23+2×24+…2×2n-(2n-1)×2n+1…(7分)
=2+2×
| 4(1-2n-1) |
| 1-2 |
Dn=(2n-3)2n+1+6…(9分)
(Ⅲ)cn=
|
T2n=(a1+a3+…+a2n-1)-(b2+b4+…b2n)
=2+23+…+22n-1-[3+7+…+(4n-1)]=
| 22n+1-2 |
| 3 |
点评:本题考查数列的通项与求和,考查等差数列与等比数列的判定,考查错位相减法的运用,属于中档题.
练习册系列答案
相关题目