ÌâÄ¿ÄÚÈÝ
17£®¶ÔÓÚ¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬Èô´æÔÚx0ʹµÃ$\underset{\underbrace{f£¨f¡£¨f£¨{x}_{0}£©£©£©}}{k}$=x0£¨*£©£¬ÆäÖÐkΪij¸öÕýÕûÊý£¬Ôò³Æx0Ϊº¯Êýf£¨x£©µÄÒ»¸öÖÜÆÚµã£¬Ê¹µÃ£¨*£©Ê½³ÉÁ¢µÄÕýÕûÊýk³ÆÎªx0µÄÖÜÆÚ£¬Ê¹µÃ£¨*£©Ê½³ÉÁ¢µÄ×îСÕýÕûÊýk³ÆÎªx0µÄ×îСÖÜÆÚ£¬Èôº¯Êýf£¨x£©=1-|2x-1|£¬Ôòº¯Êýf£¨x£©£¨¡¡¡¡£©| A£® | Ç¡ÓÐÒ»¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£¬Ç¡ÓÐÒ»¸ö×îСÖÜÆÚΪ2µÄÖÜÆÚµã | |
| B£® | Ç¡ÓÐÒ»¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£¬Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ2µÄÖÜÆÚµã | |
| C£® | Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£¬Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ2µÄÖÜÆÚµã | |
| D£® | Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£¬Ç¡ÓÐËĸö×îСÖÜÆÚΪ2µÄÖÜÆÚµã |
·ÖÎö ÔËÓ÷ֶκ¯Êý±íʾf£¨x£©£¬ÔÙÁîf£¨x£©=x£¬½â·½³Ì¿ÉµÃº¯Êýf£¨x£©Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£»ÔÙ½«f£¨f£¨x£©£©Ð´³É·Ö¶Îº¯Êý£¬Áîf£¨f£¨x£©£©=x£¬½â·½³Ì¿ÉµÃº¯Êýf£¨x£©Ç¡ÓÐËĸö×îСÖÜÆÚΪ2µÄÖÜÆÚµã£®¼´¿ÉµÃµ½½áÂÛ£®
½â´ð ½â£ºf£¨x£©=1-|2x-1|=$\left\{\begin{array}{l}{2-2x£¬x¡Ý\frac{1}{2}}\\{2x£¬x£¼\frac{1}{2}}\end{array}\right.$£¬
Áîf£¨x£©=x£¬ÓÉ2-2x=x£¬½âµÃx=$\frac{2}{3}$£»
ÓÉ2x=x£¬½âµÃx=0£¬
¼´º¯Êýf£¨x£©Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£»
f£¨f£¨x£©£©=1-|2£¨1-|2x-1|£©-1|=$\left\{\begin{array}{l}{4x£¬x¡Ü\frac{1}{4}}\\{2-4x£¬\frac{1}{4}£¼x¡Ü\frac{1}{2}}\\{4x-2£¬\frac{1}{2}£¼x¡Ü\frac{3}{4}}\\{4-4x£¬x£¾\frac{3}{4}}\end{array}\right.$£¬
Áîf£¨f£¨x£©£©=x£¬
ÓÉ4x=x£¬¿ÉµÃx=0£¬ÓÉ2-4x=x£¬½âµÃx=$\frac{2}{5}$£¬
ÓÉ4x-2=x£¬½âµÃx=$\frac{2}{3}$£¬ÓÉ4-4x=x£¬½âµÃx=$\frac{4}{5}$£®
¼´Óк¯Êýf£¨x£©Ç¡ÓÐËĸö×îСÖÜÆÚΪ2µÄÖÜÆÚµã£®
¹ÊÑ¡D£®
µãÆÀ ±¾Ì⿼²éº¯ÊýµÄÐÔÖʺÍÔËÓã¬Ö÷Òª¿¼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²é·Ö¶Îº¯ÊýµÄÔËÓã¬×¢ÒâÈ¥¾ø¶ÔÖµµÄ·½·¨£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{31}{16}$ | B£® | $\frac{31}{32}$ | C£® | 31 | D£® | 15 |