题目内容
log2+log927+4log413=________.
15
[解析] 原式=+log3233+13=15.
计算:(1)log2+log212-log242-1;
(2)(log32+log92)·(log43+log83).
(文)已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是
A.-1+log2
B.
C.
D.
化简求值
(2)
化简求值.
(1)log2+log212-log242-1;
(2)(lg2)2+lg2·lg50+lg25;
(3)(log32+log92)·(log43+log83).