题目内容

设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=

  (A)    (B)8    (C)    (D) 16

【答案】B

【命题立意】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想。

【解析】抛物线的焦点F(2,0),直线AF的方程为,所以点,从而|PF|=6+2=8

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网