题目内容

9、已知定义域为R的函数f(x)在区间(4,+∞)上为减函数,且函数y=f(x+4)为偶函数,则(  )
分析:先利用函数的奇偶性求出f(2)=f(6),f(3)=f(5),再利用单调性判断函数值的大小.
解答:解:∵y=f(x+4)为偶函数,∴f(-x+4)=f(x+4)
令x=2,得f(2)=f(-2+4)=f(2+4)=f(6),
同理,f(3)=f(5),又知f(x)在(4,+∞)上为减函数,
∵5<6,∴f(5)>f(6);∴f(2)<f(3);f(2)=f(6)<f(5)
f(3)=f(5)>f(6).
故选D
点评:此题主要考查偶函数的图象性质:关于y轴对称及函数的图象中平移变换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网