题目内容
记关于x的不等式
<0的解集为P,不等式(1+x)(1-|x|)≥0的解集为Q
(1)若a=2,求集合P,Q和P∩Q;
(2)若P∪Q=Q,求a的取值范围.
| x-a |
| x+1 |
(1)若a=2,求集合P,Q和P∩Q;
(2)若P∪Q=Q,求a的取值范围.
(1)a=2代入
<0,得
<0,
所以P={x|-1<x<2}(4分),
不等式(1+x)(1-|x|)≥0?
或
解得:0≤x≤1或x<0.
∴Q={x|x≤1};
P∩Q={x|-1<x≤1};
(2)Q={x|x≤1}(6分)
①当a>-1时,∴P={x|-1<x<a}(8分)
∵P∪Q=Q,∴P⊆Q(10分)
所以-1<a≤1,
②当a=-1时,∴P=∅,
∵P∪Q=Q,∴P⊆Q
所以a=-1,
③当a>-1时,∴P={x|a<x<-1}(14分)
∴P⊆Q,有P∪Q=Q,
∴所以a<-1,
综上所述,a的取值范围a≤1.(16分)
| x-a |
| x+1 |
| x-2 |
| x+1 |
所以P={x|-1<x<2}(4分),
不等式(1+x)(1-|x|)≥0?
|
|
解得:0≤x≤1或x<0.
∴Q={x|x≤1};
P∩Q={x|-1<x≤1};
(2)Q={x|x≤1}(6分)
①当a>-1时,∴P={x|-1<x<a}(8分)
∵P∪Q=Q,∴P⊆Q(10分)
所以-1<a≤1,
②当a=-1时,∴P=∅,
∵P∪Q=Q,∴P⊆Q
所以a=-1,
③当a>-1时,∴P={x|a<x<-1}(14分)
∴P⊆Q,有P∪Q=Q,
∴所以a<-1,
综上所述,a的取值范围a≤1.(16分)
练习册系列答案
相关题目