题目内容
(2013•湖北)设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=
,则x+y+z=
.
| 14 |
3
| ||
| 7 |
3
| ||
| 7 |
分析:根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值
,由不等式的等号成立的条件解出x=
、y=
且z=
,由此即可得到x+y+z的值.
| 14 |
| ||
| 14 |
| ||
| 7 |
3
| ||
| 14 |
解答:解:根据柯西不等式,得
(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)
当且仅当
=
=
时,上式的等号成立
∵x2+y2+z2=1,∴(x+2y+3z)2≤14,
结合x+2y+3z=
,可得x+2y+3z恰好取到最大值
∴
=
=
=
,可得x=
,y=
,z=
因此,x+y+z=
+
+
=
故答案为:
(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)
当且仅当
| x |
| 1 |
| y |
| 2 |
| z |
| 3 |
∵x2+y2+z2=1,∴(x+2y+3z)2≤14,
结合x+2y+3z=
| 14 |
| 14 |
∴
| x |
| 1 |
| y |
| 2 |
| z |
| 3 |
| ||
| 14 |
| ||
| 14 |
| ||
| 7 |
3
| ||
| 14 |
因此,x+y+z=
| ||
| 14 |
| ||
| 7 |
3
| ||
| 14 |
3
| ||
| 7 |
故答案为:
3
| ||
| 7 |
点评:本题给出x、y、z的平方和等于1,在x+2y+3z恰好取到最大值
的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.
| 14 |
练习册系列答案
相关题目