题目内容

在空间四边形ABCD中,点E、F、G、H分别在AB、BC、CD、DA上,若直线EH与FG相交于点P,则点P与直线BD的关系是
P∈BD
P∈BD
分析:根据题意,可得直线EH、FG分别是平面ABD、平面BCD内的直线,因此EH、FG的交点必定在平面ABD和平面BCD的交线上.而平面ABD交平面BCD于BD,由此即可得到点P在直线BD上,可得本题答案.
解答:解:∵点E、H分别在AB、AD上,而AB、AD是平面ABD内的直线
∴E∈平面ABD,H∈,可得直线EH?平面ABD
∵点F、G分别在BC、CD上,而BC、CD是平面BCD内的直线
∴F∈平面BCD,H∈平面BCD,可得直线FG?平面BCD
因此,直线EH与FG的公共点在平面ABD与平面BCD的交线上
∵平面ABD∩平面BCD=BD,
∴点P∈直线BD,直线EH与FG相交于点P,
故答案为:P∈BD
点评:本题给出空间四边形,判断直线EH、FG的交点与已知直线BD的位置关系,着重考查了平面的基本性质和空间直线的位置关系判断等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网