题目内容
设是正项数列,其前项和满足条件,则数列的通项公式= ▲ .
已知正项数列,其前项和满足且是和的等比中项..
(1)求数列的通项公式;
(2)设,求数列的前99项和.
(满分14分)设是正数组成的数列,其前项和为,并且对于所有的,都有。
(1)写出数列的前3项;
(2)求数列的通项公式(写出推证过程);
(3)设,是数列的前项和,求使得对所有n N+都成立的最小正整数的值。
(本题满分14分)
已知是递增数列,其前项和为,,且,.
(Ⅰ)求数列的通项;
(Ⅱ)是否存在,使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;
(Ⅲ)设,若对于任意的,不等式
恒成立,求正整数的最大值.