题目内容
已知数列{an}的通项公式为an=2n-1+n+
-1,则a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=
| 1 |
| n |
3n+n•2n-1+
| 2n+1-1 |
| n+1 |
3n+n•2n-1+
.| 2n+1-1 |
| n+1 |
分析:把an=2n-1+n+
-1代入所求的式子,然后分组分别利用二项式系数的性质结合数列的求和进行求解
| 1 |
| n |
解答:解:∵(1+2)n=Cn0•20+Cn1•21+…+Cnn•2n=3n
又∵k
=k•
=
=nCn-1k-1
∴(1-1)Cn0+(2-1)Cn1+…+[(n+1)-1]Cnn=Cn1+2Cn2+…+nCnn
=n(Cn-10+Cn-11+…+Cn-1n-1)=n•2n-1
∵
=
=
=
×
=
∴
+
+…+
=
=
则a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=(20Cn0+…+2nCnn)+(cn1+2Cn2+…+nCnn)+(
+
+…+
)
=3n+n•2n-1+
故答案为:3n+n•2n-1+
又∵k
| C | k n |
| n! |
| k!(n-k)! |
| n•(n-1)! |
| (k-1)![(n-1)-(k-1)]! |
∴(1-1)Cn0+(2-1)Cn1+…+[(n+1)-1]Cnn=Cn1+2Cn2+…+nCnn
=n(Cn-10+Cn-11+…+Cn-1n-1)=n•2n-1
∵
| ||
| n+1 |
| (n+1)! |
| (n+1)•k!•(n+1-k)! |
| n! |
| k!(n+1-k)! |
=
| 1 |
| k |
| n! |
| (k-1)!(n+1-k)! |
| ||
| k |
∴
| ||
| 1 |
| ||
| 2 |
| ||
| n+1 |
| ||||||
| n+1 |
| 2n+1-1 |
| n+1 |
则a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=(20Cn0+…+2nCnn)+(cn1+2Cn2+…+nCnn)+(
| ||
| 1 |
| ||
| 2 |
| ||
| n+1 |
=3n+n•2n-1+
| 2n+1-1 |
| n+1 |
故答案为:3n+n•2n-1+
| 2n+1-1 |
| n+1 |
点评:本题主要考查了二项展开式的性质应用,数列求和的应用,解题的关键是根据二项式系数的性质:①kCnk=nCn-1k-1②Cn0+Cn1+…+Cnn=2n
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|