题目内容

5.若函数f(x)是定义在R上的偶函数,在区间(-∞,0)上是减函数,则使f(lnx)<f(1)的x的取值范围为($\frac{1}{e}$,e).

分析 函数f(x)是R上的偶函数,且在(-∞,0]上是减函数,可得函数f(x)在[0,+∞)上是增函数,由f(lnx)<f(1),即f(|lnx|)<f(1),利用单调性即可得出.

解答 解:∵函数f(x)是R上的偶函数,且在(-∞,0]上是减函数,
∴函数f(x)在[0,+∞)上是增函数,
∵f(lnx)<f(1),即f(|lnx|)<f(1),
∴|lnx|<1,∴-1<lnx<1,
解得:$\frac{1}{e}$<x<e
∴实数a的取值范围是($\frac{1}{e}$,e),
故答案为:$(\frac{1}{e},e)$.

点评 本题考查了函数的奇偶性、单调性,得到f(|lnx|)<f(1)是解题的关键,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网