题目内容

已知圆C:x2+y2+bx+ay-3=0(a,b为正实数)上任意一点关于直线l:x+y+2=o的对称点都在圆C上,则
1
a
+
3
b
的最小值为______.
圆C:x2+y2+bx+ay-3=0(a,b为正实数),所以圆的圆心坐标(-
b
2
,-
a
2
),
因为圆C:x2+y2+bx+ay-3=0(a,b为正实数)上任意一点关于直线l:x+y+2=o的对称点都在圆C上,
所以直线经过圆心,即a+b=4,
1
a
+
3
b
=(
1
a
+
3
b
a+b
4

=
1
4
+
3
4
+
b
4a
 +
3a
4b

=1+
b
4a
+
3a
4b

≥1+2
b
4a
×
3a
4b

=1+
3
2
.当且仅当
b
4a
=
3a
4b
且a+b=4时取等号.
故答案为:1+
3
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网