ÌâÄ¿ÄÚÈÝ
17£®£¨I£©¼ÆËãÁ½¶ÓÔÚ¸öÈËÈüÖгɼ¨µÄ¾ùÖµºÍ·½²î£»
£¨¢ò£©Çó¼×¶ÓÔÚÍÅÌåÈüÖÐÖÁÉÙ2Ãû¶ÓÔ±»ñʤµÄ¸ÅÂÊ£®
·ÖÎö £¨¢ñ£©¸ù¾Ýƽ¾ùÊýºÍ·½²îµÄ¹«Ê½¼ÆËã¼´¿É£»
£¨¢ò£©¸ù¾ÝÏ໥¶ÀÁ¢Ê¼þͬʱ·¢ÉúµÄ¸ÅÂʺͻ¥³âʼþµÄ¸ÅÂʵõ½½á¹û£®
½â´ð ½â£º£¨¢ñ£©Óɾ¥Ò¶Í¼¿ÉÖª£¬
$\overline{x¼×}$=$\frac{85+83+86+96+90}{5}$=88£¬$\overrightarrow{xÒÒ}$=$\frac{88+84+83+92+93}{5}$=88£»
S${\;}_{¼×}^{2}$=$\frac{1}{5}$[£¨85-88£©2+£¨83-88£©2+£¨86-88£©2+£¨96-88£©2+£¨90-88£©2]=21.2£¬
S${\;}_{ÒÒ}^{2}$=$\frac{1}{5}$[£¨88-88£©2+£¨84-88£©2+£¨83-88£©2+£¨92-88£©2+£¨93-88£©2]=16.4£®
£¨¢ò£©Éè¼×¶Ó²Î¼Ó¸öÈËÄÜÁ¦±ÈÈü³É¼¨Ç°ÈýÃûÔÚ¶Ô¿¹ÈüµÄ»ñʤµÄʼþ·Ö±ðΪA¡¢B¡¢C£¬
ÓÉÌâÒâ¿ÉÖªP£¨A£©=$\frac{2}{3}$£¬P£¨B£©=P£¨C£©=$\frac{1}{3}$£¬ÇÒA¡¢B¡¢CÏ໥¶ÀÁ¢£¬
Éè¼×¶ÓÖÁÉÙ2Ãû¶ÓÔ±»ñʤµÄʼþΪE£¬ÔòE=£¨ABC£©¡È£¨AB$\overline{C}$£©¡È£¨A$\overline{B}$C£©¡È£¨$\overline{A}$BC£©£®
P£¨E£©=$\frac{2}{3}$¡Á$\frac{1}{3}$¡Á$\frac{1}{3}$+$\frac{2}{3}$¡Á$\frac{1}{3}$¡Á£¨1-$\frac{1}{3}$£©+$\frac{2}{3}$¡Á£¨1-$\frac{1}{3}$£©¡Á$\frac{1}{3}$+£¨1-$\frac{2}{3}$£©¡Á$\frac{1}{3}$¡Á$\frac{1}{3}$=$\frac{11}{27}$£®
µãÆÀ ±¾Ì⾥Ҷͼ£¬Æ½¾ùÊý£¬·½²î£¬»¥³âʼþ¡¢Ï໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʼÆË㣬»¥³âʼþÒ»°ãÉæ¼°·ÖÀàÌÖÂÛ£¬×¢ÒâÒªÈ«Ãæ·ÖÎö£¬×öµ½²»Öز»Â©£¬ÊôÓÚÖеµÌ⣮
| A£® | $¡À\frac{1}{3}$ | B£® | ¡À$\frac{1}{2}$ | C£® | ¡À$\frac{\sqrt{3}}{2}$ | D£® | ¡À$\frac{\sqrt{2}}{2}$ |
| A£® | $\frac{4}{3}$£¨¦Ð+1£© | B£® | $\frac{2}{3}$£¨¦Ð+1£© | C£® | $\frac{4}{3}$£¨¦Ð+$\frac{1}{2}$£© | D£® | $\frac{2}{3}$£¨¦Ð+$\frac{1}{2}$£© |
| A£® | $-\frac{{3\sqrt{15}}}{2}$ | B£® | $\frac{{3\sqrt{15}}}{2}$ | C£® | $-\frac{{3\sqrt{2}}}{2}$ | D£® | $\frac{{3\sqrt{2}}}{2}$ |