题目内容
已知函数f(x)=
x3-
x2(x∈R).
(1)若f(x)在x=1处取得极大值,求函数f(x)的单调区间;
(2)若关于x的方程f(x)=
-mx(m≤1)有三个不同的根,求实数m的取值范围.
| 1 |
| 3 |
| m+1 |
| 2 |
(1)若f(x)在x=1处取得极大值,求函数f(x)的单调区间;
(2)若关于x的方程f(x)=
| 1 |
| 3 |
(1)f′(x)=x2-(m+1)x,…(1分)
则由题意,f(x)在x=1处取得极大值
∴f′(1)=12-(m+1)×1=0,即m=0.…(2分)
∴f(x)=
x3-
x2,f′(x)=x2-x.
由f′(x)=x2-x=0,解得x=0或x=1.
令f′(x)>0,得x<0或x>1;令f′(x)<0,得0<x<1.
∴函数f(x)的单调递增区间是(-∞,0)和(1,+∞),单调递减区间是(0,1).…(5分)
(2)设g(x)=f(x)+mx-
=
x3-
x2+mx-
,
则g′(x)=x2-(m+1)x+m=(x-m)(x-1).
令g′(x)=0,得x=m或x=1.
①当m=1时,g′(x)=(x-1)2≥0,g(x)在R上单调递增,不合题意.…(7分)

…(9分)
因为方程f(x)=
-mx(m≤1)有三个不同的根,即函数g(x)=f(x)+mx-
与x轴有三个不同的交点,所以
…(10分)
解得m<1-
.…(12分)
综上所述,实数m的取值范围是(-∞,1-
). …(13分)
则由题意,f(x)在x=1处取得极大值
∴f′(1)=12-(m+1)×1=0,即m=0.…(2分)
∴f(x)=
| 1 |
| 3 |
| 1 |
| 2 |
由f′(x)=x2-x=0,解得x=0或x=1.
令f′(x)>0,得x<0或x>1;令f′(x)<0,得0<x<1.
∴函数f(x)的单调递增区间是(-∞,0)和(1,+∞),单调递减区间是(0,1).…(5分)
(2)设g(x)=f(x)+mx-
| 1 |
| 3 |
| 1 |
| 3 |
| m+1 |
| 2 |
| 1 |
| 3 |
则g′(x)=x2-(m+1)x+m=(x-m)(x-1).
令g′(x)=0,得x=m或x=1.
①当m=1时,g′(x)=(x-1)2≥0,g(x)在R上单调递增,不合题意.…(7分)
…(9分)
因为方程f(x)=
| 1 |
| 3 |
| 1 |
| 3 |
|
解得m<1-
| 3 |
综上所述,实数m的取值范围是(-∞,1-
| 3 |
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=1+
,若f(x)>g(x),则实数x的取值范围是( )
| 1 |
| |x| |
| x+|x| |
| 2 |
| A、(-∞,-1)∪(0,1) | ||||
B、(-∞,-1)∪(0,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,0)∪(0,
|