搜索
题目内容
设f'(x)是
f(x)=
1
3
x
3
+2x
的导函数,则f'(-1)等于( )
A.3
B.2
C.-2
D.-3
试题答案
相关练习册答案
由题意,f′(x)=x
2
+2
∴f'(-1)=1+2=3
故选A
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R
+
,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2
n
)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2
n
)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2
-n
)与2
-n
+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).
(2006•浦东新区一模)设f(x)是定义在R上的函数.
①若存在x
1
,x
2
∈R,x
1
<x
2
,使f(x
1
)<f(x
2
)成立,则函数f(x)在R上单调递增;
②若存在x
1
,x
2
∈R,x
1
<x
2
,使f(x
1
)≤f(x
2
)成立,则函数f(x)在R上不可能单调递减;
③若存在x
2
>0,对于任意x
1
∈R,都有f(x
1
)<f(x
1
+x
2
)成立,则函数f(x)在R上单调递增;
④对任意x
1
,x
2
∈R,x
1
<x
2
,都有f(x
1
)≥f(x
2
)成立,则函数f(x)在R上单调递减.
以上命题正确的序号是( )
A.①③
B.②③
C.②④
D.②
设f(x)是定义在集合D上的函数,若对集合D中的任意两数x
1
,x
2
恒有
成立,则f(x)是定义在D上的β函数.
(1)试判断f(x)=x
2
是否是其定义域上的β函数?
(2)设f(x)是定义在R上的奇函数,求证:f(x)不是定义在R上的β函数.
(3)设f(x)是定义在集合D上的函数,若对任意实数α∈[0,1]以及集合D中的任意两数x
1
,x
2
恒有f(αx
1
+(1-α)x
2
)≤αf(x
1
)+(1-α)f(x
2
),则称f(x)是定义在D上的α-β函数.已知f(x)是定义在R上的α-β函数,m是给定的正整数,设a
n
=f(n),n=1,2,3…m且a
0
=0,a
m
=2m,记∫=a
1
+a
2
+a
3
+…+a
m
,对任意满足条件的函数f(x),求∫的最大值.
对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R
+
,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2
n
)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2
n
)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2
-n
)与2
-n
+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).
设f(x)是定义在R上的函数.
①若存在x
1
,x
2
∈R,x
1
<x
2
,使f(x
1
)<f(x
2
)成立,则函数f(x)在R上单调递增;
②若存在x
1
,x
2
∈R,x
1
<x
2
,使f(x
1
)≤f(x
2
)成立,则函数f(x)在R上不可能单调递减;
③若存在x
2
>0,对于任意x
1
∈R,都有f(x
1
)<f(x
1
+x
2
)成立,则函数f(x)在R上单调递增;
④对任意x
1
,x
2
∈R,x
1
<x
2
,都有f(x
1
)≥f(x
2
)成立,则函数f(x)在R上单调递减.
以上命题正确的序号是( )
A.①③
B.②③
C.②④
D.②
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案