题目内容
(本小题12分)某射手在一次射击训练中,射中10环,9环,8环、7环的概率分别是0.21,0.23,0.25,0.28,计算这个射手在一次射击中:
(1)射中10环或7环的概率; (2)不够7环的概率。
(1)射中10环或7环的概率0.49
(2)不够7环的概率0.03
【解析】解:设A=“射中10环”; B=“射中9环”; C=“射中8环” D=“射中7环”
事件A、B、C、D是彼此互斥事件。 ………………..2
(1) 射中10环或7环为
,P(
)=P(A)+P(D)=0.21+0.28=0.49
射中10环或7环的概率0.49 ………………7
(2)令不够7环的是事件E,则事件E与
是对立事件
P(E)=1-P(
)=1-(0.21+0.23+0.25+0.28)=1-0.97=0.03
不够7环的概率0.03 ……………….12
(本小题满分12分)
甲、乙两名射手各进行一次射击,射中环数![]()
的分布列分别为:
|
|
8 |
9 |
10 |
|
P |
0.3 |
0.5 |
a |
|
|
8 |
9 |
10 |
|
P |
0.2 |
0.3 |
b |
(I)确定a、b的值,并求两人各进行一次射击,都射中10环的概率;
(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中10环,则射击结束,否则继续射击,但最多不超过4轮,求结束时射击轮次数
的分布列及期望,并求结束时射击轮次超过2次的概率。
(本小题满分12分)
甲、乙两名射手各进行一次射击,射中环数![]()
的分布列分别为:
|
|
8 |
9 |
10 |
|
P |
0.3 |
0.5 |
a |
|
|
8 |
9 |
10 |
|
P |
0.2 |
0.3 |
b |
(I)确定a、b的值,并求两人各进行一次射击,都射中10环的概率;
(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中10环,则射击结束,否则继续射击,但最多不超过4轮,求结束时射击轮次数
的分布列及期望,并求结束时射击轮次超过2次的概率。