题目内容
设数列{an}的前n项和为Sn,a1=1,an=
+2(n-1)(n∈N+).
(1)求证:数列{
}为等差数列;
(2)设数列{
}的前n项和为Tn,证明:
≤Tn<
.
| Sn |
| n |
(1)求证:数列{
| Sn |
| n |
(2)设数列{
| 1 |
| anan+1 |
| 1 |
| 5 |
| 1 |
| 4 |
(1)证明:由题意:nan=Sn+2n(n-1),∴n(Sn-Sn-1)=Sn+2n(n-1)(n∈N+,n≥2)…(2分)
即:(n-1)Sn-nSn-1=2n(n-1),∴
-
=2,
所以数列{
}为等差数列; …(6分)
(2)由(1)得:
=1+(n-1)×2,∴Sn=2n2-n,
∴an=Sn-Sn-1=2n2-n-2(n-1)2+(n-1)=4n-3,(n∈N+,n≥2)…(8分)
=
=
(
-
)
∴Tn=
(1-
+
-
+…
-
)=
(1-
)<
,…(10分)
又Tn为增函数,∴Tn≥T1=
,∴
≤Tn<
…(13分)
即:(n-1)Sn-nSn-1=2n(n-1),∴
| Sn |
| n |
| Sn-1 |
| n-1 |
所以数列{
| Sn |
| n |
(2)由(1)得:
| Sn |
| n |
∴an=Sn-Sn-1=2n2-n-2(n-1)2+(n-1)=4n-3,(n∈N+,n≥2)…(8分)
| 1 |
| anan+1 |
| 1 |
| (4n-3)(4n+1) |
| 1 |
| 4 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
∴Tn=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
| 1 |
| 4 |
| 1 |
| 4n+1 |
| 1 |
| 4 |
又Tn为增函数,∴Tn≥T1=
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 4 |
练习册系列答案
相关题目