题目内容
14.已知数列{an}是等比数列,且满足a2+a5=36,a3•a4=128.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}是递增数列,且bn=an+log2an(n∈N*),求数列{bn}的前n项和Sn.
分析 (I)数列{an}是等比数列,且满足a2+a5=36,a3•a4=128.可得a2a5=a3a4=128,再利用等比数列的通项公式即可得出;
(II)利用等差数列与等比数列前n项和公式即可得出.
解答 解:(Ⅰ)∵数列{an}是等比数列,且满足a2+a5=36,a3•a4=128.
∴a2a5=a3a4=128,
联立$\left\{\begin{array}{l}{{a}_{2}+{a}_{5}=36}\\{{a}_{2}{a}_{5}=128}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{2}=4}\\{{a}_{5}=32}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{2}=32}\\{{a}_{5}=4}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{q=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=64}\\{q=\frac{1}{2}}\end{array}\right.$.
∴an=2n,或${a}_{n}=64×(\frac{1}{2})^{n-1}={2}^{7-n}$.
(Ⅱ)∵数列{an}是递增数列,∴${a}_{n}={2}^{n}$,
∴bn=an+log2an
=2n+n,
∴数列{bn}的前n项和Sn=(2+22+…+2n)+(1+2+…+n)
=$\frac{2({2}^{n}-1)}{2-1}$+$\frac{n(1+n)}{2}$
=2n+1-2+$\frac{n(n+1)}{2}$.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.
| A. | 0.3 | B. | 0.7 | C. | 0.3或0.7 | D. | 1 |
| A. | [-4,5] | B. | [-5,5] | C. | [4,5] | D. | [-5,4] |
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
| A. | 6 | B. | 4 | C. | -2 | D. | -4 |
| A. | $\frac{9}{25}$ | B. | $\frac{18}{25}$ | C. | $\frac{36}{25}$ | D. | $\frac{12}{5}$ |