题目内容
设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=f(x)的图象是
- A.

- B.

- C.

- D.

D
分析:先求出函数f(x)ex的导函数,利用x=-1为函数f(x)ex的一个极值点可得a,b,c之间的关系,再代入函数f(x)=ax2+bx+c,对答案分别代入验证,看哪个答案不成立即可.
解答:由y=f(x)ex=ex(ax2+bx+c)?y'=f'(x)ex+exf(x)=ex[ax2+(b+2a)x+b+c],
由x=-1为函数f(x)ex的一个极值点可得,-1是方程ax2+(b+2a)x+b+c=0的一个根,
所以有a-(b+2a)+b+c=0?c=a.
法一:所以函数f(x)=ax2+bx+a,对称轴为x=-
,且f(-1)=2a-b,f(0)=a.
对于A,由图得a>0,f(0)>0,f(-1)=0符合要求,
对于B,由图得a<0,f(0)<0,f(-1)=0不矛盾,
对于C,由图得a<0,f(0)<0,x=-
>0?b>0?f(-1)<0不矛盾,
对于D,由图得a>0,f(0)>0,x=-
<-1?b>2a?f(-1)<0于原图中f(-1)>0矛盾,D不对.
法二:所以函数f(x)=ax2+bx+a,由此得函数相应方程的两根之积为1,对照四个选项发现,D不成立
故选 D.
点评:本题考查极值点与导函数之间的关系.一般在知道一个函数的极值点时,直接把极值点代入导数令其等0即可.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.
分析:先求出函数f(x)ex的导函数,利用x=-1为函数f(x)ex的一个极值点可得a,b,c之间的关系,再代入函数f(x)=ax2+bx+c,对答案分别代入验证,看哪个答案不成立即可.
解答:由y=f(x)ex=ex(ax2+bx+c)?y'=f'(x)ex+exf(x)=ex[ax2+(b+2a)x+b+c],
由x=-1为函数f(x)ex的一个极值点可得,-1是方程ax2+(b+2a)x+b+c=0的一个根,
所以有a-(b+2a)+b+c=0?c=a.
法一:所以函数f(x)=ax2+bx+a,对称轴为x=-
对于A,由图得a>0,f(0)>0,f(-1)=0符合要求,
对于B,由图得a<0,f(0)<0,f(-1)=0不矛盾,
对于C,由图得a<0,f(0)<0,x=-
对于D,由图得a>0,f(0)>0,x=-
法二:所以函数f(x)=ax2+bx+a,由此得函数相应方程的两根之积为1,对照四个选项发现,D不成立
故选 D.
点评:本题考查极值点与导函数之间的关系.一般在知道一个函数的极值点时,直接把极值点代入导数令其等0即可.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.
练习册系列答案
相关题目
| x |
| 1 | ||
|
| ∫ | 2π π |
A、-
| ||
| B、-160 | ||
| C、160 | ||
| D、20 |