题目内容
已知数列{an}的通项公式为an=
|
设bn=
| a2n-1 |
| a2n |
| 1 |
| n |
分析:由已知得,a2n-1=
=n,a2n=2
=2n,故bn=
=
,Sn=b1+b2++bn=1×
+2×(
)2+3×(
)3++n(
)n,由错位相减法知Sn=2-(n+2)(
)n.故|Sn-2|=(n+2)(
)n,问题转化为证明:当n≥6时,n(n+2)<2n,再用数学归纳法证明.
| 2n-1+1 |
| 2 |
| 2n |
| 2 |
| a2n-1 |
| a2n |
| n |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:由已知得,a2n-1=
=n,a2n=2
=2n,
故bn=
=
,(2分)
Sn=b1+b2++bn=1×
+2×(
)2+3×(
)3++n(
)n(3分)
Sn=1×(
)2+2×(
)3+3×(
)4++(n-1)•(
)n+n•(
)n+1(4分)
两式相减得,
Sn=
+(
)2+(
)3+(
)4++(
)n-n•(
)n+1=1-(
)n-n(
)n+1(5分)
化简得Sn=2-(n+2)(
)n.故|Sn-2|=(n+2)(
)n(7分)
因而|Sn-2|<
?(n+2)(
)n<
?n(n+2)<2n
问题转化为证明:当n≥6时,n(n+2)<2n,(9分)
采用数学归纳法.
(1)当n=6时,n(n+2)=6×8=48,2n=26=64,48<64,
此时不等式成立,(10分)
(2)假设n=k(k≥6)时不等式成立,即k(k+2)<2k,(11分)
那么当n=k+1时,2k+1=2×2k>2k(k+2)=2k2+4k=k2+4k+k2>k2+4k+3=(k+1)(k+3)=(k+1)[(k+1)+2]
这说明,当n=k+1时不等式也成立(13分)
综上可知,当n≥6时,n(n+2)<2n成立,原命题得证.(14分)
| 2n-1+1 |
| 2 |
| 2n |
| 2 |
故bn=
| a2n-1 |
| a2n |
| n |
| 2n |
Sn=b1+b2++bn=1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得,
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
化简得Sn=2-(n+2)(
| 1 |
| 2 |
| 1 |
| 2 |
因而|Sn-2|<
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
问题转化为证明:当n≥6时,n(n+2)<2n,(9分)
采用数学归纳法.
(1)当n=6时,n(n+2)=6×8=48,2n=26=64,48<64,
此时不等式成立,(10分)
(2)假设n=k(k≥6)时不等式成立,即k(k+2)<2k,(11分)
那么当n=k+1时,2k+1=2×2k>2k(k+2)=2k2+4k=k2+4k+k2>k2+4k+3=(k+1)(k+3)=(k+1)[(k+1)+2]
这说明,当n=k+1时不等式也成立(13分)
综上可知,当n≥6时,n(n+2)<2n成立,原命题得证.(14分)
点评:本题考查数列的性质和综合应用,解题时要注意合理地进行等价转化和数学归纳法的证明过程.
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|