题目内容

设a、b、c是任意的非零平面向量,且相互不共线,则
①(a·b)c=(c·a)b;
②|a|-|b|<|a-b|;
③(b·c)a-(c·a)b不与c垂直;
④(3a+2b)·(3a-2b)=9|a|2-4|b|2中,

是真命题的是


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ③④
  4. D.
    ②④
D
①平面向量的数量积不满足结合律,故①假;
②由向量的减法运算可知|a|、|b|、|a-b|恰为一个三角形的三条边长,由“两边之差小于第三边”.故②真;
③因为[(b·c)a-(c·a)b]·c=(b·c)a·c-(c·a)b·c=0,所以垂直.故③假;
④(3a+2b)(3a-2b)=9·a·a-4b·b=9|a|2-4|b|2成立.故④真.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网