题目内容

三棱锥S-ABC中,SA⊥底面ABC,SA=4,AB=3,D为AB的中点∠ABC=90°,则点D到面SBC的距离等于______.
∵SA⊥底面ABC,SA=4,AB=3,D为AB的中点,∠ABC=90°,
∴BC⊥面SAB∴面 SBC⊥面SAB,在面SAB中,作DE⊥SB,
则 DE⊥面SBC,DE为所求.
由△BDE△BSA 得:
DE
SA
=
BD
BS
DE
4
=
3
2
5

∴DE=
6
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网