题目内容
已知数列{an}满足a1=1,a2=3,且an+2=(1+2|cos
|)an+|sin
|,n∈N*,
(Ⅰ)求a3,a4;
(Ⅱ)求a2k,a2k-1(k∈N+);
(Ⅲ)设bk=a2k+(-1)k-1λ•2a2k-1(λ为非零整数),试确定λ的值,使得对任意(k∈N+)都有bk+1>bk成立.
| nπ |
| 2 |
| nπ |
| 2 |
(Ⅰ)求a3,a4;
(Ⅱ)求a2k,a2k-1(k∈N+);
(Ⅲ)设bk=a2k+(-1)k-1λ•2a2k-1(λ为非零整数),试确定λ的值,使得对任意(k∈N+)都有bk+1>bk成立.
(Ⅰ)已知数列{an}满足a1=1,a2=3,且an+2=(1+2|cos
|)an+|sin
|,n∈N*,
a3=(1+2|cos
|)a1+|sin
|=a1+1=2,
a4=(1+2|cos
|)a2+|sin
|=3a2=9,…(2分)
(Ⅱ)①设n=2k,k∈N*,
∵an+2=(1+2|cos
|)an+|sin
|,n∈N*,
又a2=3,
∴
=3.
∴当k∈N*时,数列{a2k}为等比数列.
∴a2k=a2•3k-1=3k.
②设n=2k-1,k∈N*.…(5分)
由a2k+1=(1+2|cos
|)a2k-1+|sin
|=a2k-1+1,
∴a2k+1-a2k-1=1.
∴当k∈N*时,数列{a2k-1}为等差数列.
∴a2k-1=a1+(k-1)•1=k.…(8分)
(Ⅲ)bk=a2k+(-1)k-1λ•2k-1=3k+(-1)k-1λ•2k
∴bk+1-bk=3k+1+(-1)kλ•2k+1-3k-(-1)k-1λ•2k
=2•3k+(-1)kλ(2k+1+2k)
=2•3k+(-1)kλ•3•2k.
由题意,对任意k∈N*都有bk+1>bk成立,
∴bk+1-bk=2•3k+(-1)kλ•3•2k>0对任意k∈N*恒成立,
∴2•3k>(-1)k-1λ•3•2k对任意k∈N*恒成立.
①当k为奇数时,
3k>
2k?λ<
=
(
)k对任意k∈N*恒成立.
∵k∈N*,且k为奇数,
∴
(
)k≥
=1.
∴λ<1.
②当k为偶数时,
3k>-
2k?λ>-
=-
(
)k对任意k∈N*恒成立.
∵k∈N*,且k为偶数,
∴-
(
)k≤-
(
)2=-
.∴λ>-
.
综上,有-
<λ<1.
∵λ为非零整数,∴λ=-1.…(14分)
| nπ |
| 2 |
| nπ |
| 2 |
a3=(1+2|cos
| π |
| 2 |
| π |
| 2 |
a4=(1+2|cos
| 2π |
| 2 |
| 2π |
| 2 |
(Ⅱ)①设n=2k,k∈N*,
∵an+2=(1+2|cos
| nπ |
| 2 |
| nπ |
| 2 |
又a2=3,
∴
| a2k+2 |
| a2k |
∴当k∈N*时,数列{a2k}为等比数列.
∴a2k=a2•3k-1=3k.
②设n=2k-1,k∈N*.…(5分)
由a2k+1=(1+2|cos
| (2k-1)π |
| 2 |
| (2k-1)π |
| 2 |
∴a2k+1-a2k-1=1.
∴当k∈N*时,数列{a2k-1}为等差数列.
∴a2k-1=a1+(k-1)•1=k.…(8分)
(Ⅲ)bk=a2k+(-1)k-1λ•2k-1=3k+(-1)k-1λ•2k
∴bk+1-bk=3k+1+(-1)kλ•2k+1-3k-(-1)k-1λ•2k
=2•3k+(-1)kλ(2k+1+2k)
=2•3k+(-1)kλ•3•2k.
由题意,对任意k∈N*都有bk+1>bk成立,
∴bk+1-bk=2•3k+(-1)kλ•3•2k>0对任意k∈N*恒成立,
∴2•3k>(-1)k-1λ•3•2k对任意k∈N*恒成立.
①当k为奇数时,
| 2 |
| • |
| λ |
| • |
| 3 |
| • |
| ||||
|
|
| • |
| 3 |
| 2 |
∵k∈N*,且k为奇数,
∴
|
| • |
| 3 |
| 2 |
|
| • |
| 3 |
| 2 |
∴λ<1.
②当k为偶数时,
| 2 |
| • |
| λ |
| • |
| 3 |
| • |
| ||||
|
|
| • |
| 3 |
| 2 |
∵k∈N*,且k为偶数,
∴-
|
| • |
| 3 |
| 2 |
|
| • |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
综上,有-
| 3 |
| 2 |
∵λ为非零整数,∴λ=-1.…(14分)
练习册系列答案
相关题目