ÌâÄ¿ÄÚÈÝ
14£®£¨1£©ÇóÖ¤£ºCC1¡ÍMN£»
£¨2£©ÔÚÈÎÒâ¡÷DEFÖÐÓÐÓàÏÒ¶¨Àí£ºDE2=DF2+EF2-2DF•EFcos¡ÏDFE£®ÍØÕ¹µ½¿Õ¼ä£¬Àà±ÈÈý½ÇÐεÄÓàÏÒ¶¨Àí£¬Ð´³öбÈýÀâÖùµÄÈý¸ö²à̾̾»ýÓëÆäÖÐÁ½¸ö²àÃæËù³ÉµÄ¶þÃæ½ÇÖ®¼äµÄ¹ØÏµÊ½£¬²¢ÓèÒÔÖ¤Ã÷£®
£¨3£©ÔÚ£¨2£©ÖУ¬ÎÒÃÇ¿´µ½ÁËÆ½ÃæÍ¼ÐÎÖеÄÐÔÖÊÀà±Èµ½¿Õ¼äͼÐεÄÀý×Ó£¬ÕâÑùµÄÀý×Ó»¹Óв»ÉÙ£®ÏÂÃæÇë¹Û²ìÆ½Ãæ¹´¹É¶¨ÀíµÄÌõ¼þºÍ½áÂÛÌØÕ÷£¬ÊÔ׎«¹´¹É¶¨ÀíÍÆ¹ãµ½¿Õ¼äÈ¥£®
| ¹´¹É¶¨ÀíµÄÀà±È | Èý½ÇÐÎABC | ËÄÃæÌåO-ABC |
| Ìõ¼þ | AB¡ÍAC | OA¡¢OB¡¢OCÁ½Á½´¹Ö± |
| ½áÂÛ | AB2+AC2=BC2 | £¿ |
·ÖÎö £¨1£©ÓÉÌâÒâºÍÈýÀâÖùµÄÐÔÖÊ£¬Ö¤³ö CC1¡ÍÆ½ÃæPMN£¬ÔÙÖ¤ CC1¡ÍMN£®
£¨2£©ÀûÓÃÀà±ÈÍÆÀí±ß¡°¶ÔÓ¦²à̾̾»ý¡±µÃ³ö½áÂÛ£¬Ö¤Ã÷Óõ½ÓàÏÒ¶¨ÀíÆ½ÐÐËıßÐεÄÃæ»ý¹«Ê½ºÍÌâÖеĴ¹Ö±¹ØÏµ£®
£¨3£©×÷OH¡ÍÆ½ÃæABC£¬´¹×ãΪH£¬Ò×µÃHΪ¡÷ABCµÄ´¹ÐÄ£®Á¬½áCH²¢ÑÓ³¤½»ABÓÚE£¬Á¬½áOE£¬ÔòÓÐOE¡ÍAB£¬Ö¤Ã÷$S_{¡÷OAB}^2=\frac{1}{4}A{B^2}•£¨EH•EC£©=£¨\frac{1}{2}AB•EH£©•£¨\frac{1}{2}AB•EC£©={S_{¡÷HAB}}•{S_{¡÷CAB}}$£¬$S_{¡÷OAC}^2={S_{¡÷HAC}}•{S_{¡÷BAC}}$£¬$S_{¡÷OBC}^2={S_{¡÷HBC}}•{S_{¡÷ABC}}$£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð £¨1£©Ö¤Ã÷£ºÓÉÌâÒâÖª£¬CC1¡ÎBB1£¬PM¡ÍBB1£¬PN¡ÍBB1£¬
¡àCC1¡ÍPM£¬CC1¡ÍPN£¬ÇÒPM¡ÉPN=P£¬
¡àCC1¡ÍÆ½ÃæPMN£¬MN?Æ½ÃæPMN£¬
¡àCC1¡ÍMN£»£¨4·Ö£©
£¨2£©½â£ºÔÚбÈýÀâÖùABC-A1B1C1ÖУ¬ÓÐ$S_{AB{B_1}{A_1}}^2=S_{BC{C_1}{B_1}}^2+S_{AC{C_1}{A_1}}^2-2S_{BC{C_1}{B_1}}^{\;}•S_{AC{C_1}{A_1}}^{\;}cos¦Á$
ÆäÖЦÁÎªÆ½ÃæCC1B1BÓëÆ½ÃæCC1A1AËù×é³ÉµÄ¶þÃæ½Ç£®£¨7·Ö£©
¡ßCC1¡ÍÆ½ÃæPMN£¬¡àÉÏÊöµÄ¶þÃæ½ÇΪ¡ÏMNP£¬
ÔÚ¡÷PMNÖУ¬PM2=PN2+MN2-2PN•MNcos¡ÏMNP
¡àPM2•CC12=PN2•CC12+MN2•CC12-2£¨PN•CC1£©•£¨MN•CC1£©cos¡ÏMNP£¬
¡ß${S}_{BC{C}_{1}{B}_{1}}$=PN•CC1£¬${S}_{AC{C}_{1}{A}_{1}}$=MN•CC1£¬${S}_{AB{B}_{1}{A}_{1}}$=PM•BB1£¬
¡àÓÐ$S_{AB{B_1}{A_1}}^2=S_{BC{C_1}{B_1}}^2+S_{AC{C_1}{A_1}}^2-2S_{BC{C_1}{B_1}}^{\;}•S_{AC{C_1}{A_1}}^{\;}cos¦Á$£®£¨10·Ö£©
£¨3£©¿Õ¼ä¹´¹É¶¨ÀíµÄ²ÂÏ룺
ÒÑÖªËÄÃæÌåO-ABCµÄÈýÌõ²àÀâOA¡¢OB¡¢OCÁ½Á½´¹Ö±£¬ÔòÓÐ$S_{¡÷OAB}^2+S_{¡÷OAC}^2+S_{¡÷OBC}^2=S_{¡÷ABC}^2$£¨14·Ö£©
Ö¤Ã÷£º×÷OH¡ÍÆ½ÃæABC£¬´¹×ãΪH£¬Ò×µÃHΪ¡÷ABCµÄ´¹ÐÄ£®
Á¬½áCH²¢ÑÓ³¤½»ABÓÚE£¬Á¬½áOE£¬ÔòÓÐOE¡ÍAB£®
ÔÚ¡÷OABÖУ¬${S_{¡÷OAB}}=\frac{1}{2}AB•OE⇒S_{¡÷OAB}^2=\frac{1}{4}A{B^2}•O{E^2}$
ÔÚRt¡÷EOCÖУ¬OE2=EH•EC£¬
¡à$S_{¡÷OAB}^2=\frac{1}{4}A{B^2}•£¨EH•EC£©=£¨\frac{1}{2}AB•EH£©•£¨\frac{1}{2}AB•EC£©={S_{¡÷HAB}}•{S_{¡÷CAB}}$
ͬÀí£¬$S_{¡÷OAC}^2={S_{¡÷HAC}}•{S_{¡÷BAC}}$£¬$S_{¡÷OBC}^2={S_{¡÷HBC}}•{S_{¡÷ABC}}$
ÓÚÊÇ$S_{¡÷OAB}^2+S_{¡÷OAC}^2+S_{¡÷OBC}^2=£¨{S_{¡÷HAB}}+{S_{¡÷HAC}}+{S_{¡÷HBC}}£©•{S_{¡÷ABC}}=S_{¡÷ABC}^2$£¨18·Ö£©
µãÆÀ ±¾Ì⿼²éÏßÃæ´¹Ö±¹ØÏµµÄÏ໥ת»¯£¬»¹¿¼²éÁËÀà±ÈÍÆÀí£¬Ö¤Ã÷½áÂÛʱÀûÓÃÓàÏÒ¶¨Àí£¬¼ÓÉÏÊʵ±µÄ±äÐÎÖ¤³ö½áÂÛ£®
¼×³§£º
| ·Ö×é | [29.86£¬ 29.90 £© | [29.90£¬ 29.94£© | [29.94£¬ 29.98£© | [29.9 8£¬ 30.02£© | [30.02£¬ 30.06£© | [30.06£¬ 30.10£© | [30.10£¬ 30.14£© |
| ƵÊý | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
| ·Ö×é | [29.86£¬ 29.90£© | [29.90£¬ 29.94£© | [29.94£¬ 29.98£© | [29.98£¬ 30.02£© | [30.02£¬ 30.06£© | [30.06£¬ 30.10£© | [30.10£¬ 30.14£© |
| ƵÊý | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
£¨2£©ÓÉÒÔÉÏͳ¼ÆÊý¾ÝÌîÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢ÎÊÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪ¡°Á½¸ö·Ö³§Éú²úµÄÁã¼þµÄÖÊÁ¿ÓвîÒ족£®
| ¼×³§ | ÒÒ³§ | ºÏ¼Æ | |
| ÓÅÖÊÆ· | |||
| ·ÇÓÅÖÊÆ· | |||
| ºÏ¼Æ |
| p£¨K2¡Ýk£© | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
| A£® | $-\frac{1}{2}{a^2}$ | B£® | $-\frac{{\sqrt{3}}}{2}{a^2}$ | C£® | $\frac{1}{2}{a^2}$ | D£® | $\frac{{\sqrt{3}}}{2}{a^2}$ |