ÌâÄ¿ÄÚÈÝ

14£®Èçͼ£¬µãPΪбÈýÀâÖùABC-A1B1C1µÄ²àÀâBB1ÉÏÒ»µã£¬PM¡ÍBB1½»AA1ÓÚµãM£¬PN¡ÍBB1½»CC1ÓÚµãN£®
£¨1£©ÇóÖ¤£ºCC1¡ÍMN£»
£¨2£©ÔÚÈÎÒâ¡÷DEFÖÐÓÐÓàÏÒ¶¨Àí£ºDE2=DF2+EF2-2DF•EFcos¡ÏDFE£®ÍØÕ¹µ½¿Õ¼ä£¬Àà±ÈÈý½ÇÐεÄÓàÏÒ¶¨Àí£¬Ð´³öбÈýÀâÖùµÄÈý¸ö²à̾̾»ýÓëÆäÖÐÁ½¸ö²àÃæËù³ÉµÄ¶þÃæ½ÇÖ®¼äµÄ¹ØÏµÊ½£¬²¢ÓèÒÔÖ¤Ã÷£®
£¨3£©ÔÚ£¨2£©ÖУ¬ÎÒÃÇ¿´µ½ÁËÆ½ÃæÍ¼ÐÎÖеÄÐÔÖÊÀà±Èµ½¿Õ¼äͼÐεÄÀý×Ó£¬ÕâÑùµÄÀý×Ó»¹Óв»ÉÙ£®ÏÂÃæÇë¹Û²ìÆ½Ãæ¹´¹É¶¨ÀíµÄÌõ¼þºÍ½áÂÛÌØÕ÷£¬ÊÔ׎«¹´¹É¶¨ÀíÍÆ¹ãµ½¿Õ¼äÈ¥£®
¹´¹É¶¨ÀíµÄÀà±ÈÈý½ÇÐÎABCËÄÃæÌåO-ABC
Ìõ¼þAB¡ÍACOA¡¢OB¡¢OCÁ½Á½´¹Ö±
½áÂÛAB2+AC2=BC2£¿
ÇëÔÚ´ðÌâÖ½ÉÏÍê³ÉÉϱíÖеÄÀà±È½áÂÛ£¬²¢¸ø³öÖ¤Ã÷£®

·ÖÎö £¨1£©ÓÉÌâÒâºÍÈýÀâÖùµÄÐÔÖÊ£¬Ö¤³ö CC1¡ÍÆ½ÃæPMN£¬ÔÙÖ¤ CC1¡ÍMN£®
£¨2£©ÀûÓÃÀà±ÈÍÆÀí±ß¡°¶ÔÓ¦²à̾̾»ý¡±µÃ³ö½áÂÛ£¬Ö¤Ã÷Óõ½ÓàÏÒ¶¨ÀíÆ½ÐÐËıßÐεÄÃæ»ý¹«Ê½ºÍÌâÖеĴ¹Ö±¹ØÏµ£®
£¨3£©×÷OH¡ÍÆ½ÃæABC£¬´¹×ãΪH£¬Ò×µÃHΪ¡÷ABCµÄ´¹ÐÄ£®Á¬½áCH²¢ÑÓ³¤½»ABÓÚE£¬Á¬½áOE£¬ÔòÓÐOE¡ÍAB£¬Ö¤Ã÷$S_{¡÷OAB}^2=\frac{1}{4}A{B^2}•£¨EH•EC£©=£¨\frac{1}{2}AB•EH£©•£¨\frac{1}{2}AB•EC£©={S_{¡÷HAB}}•{S_{¡÷CAB}}$£¬$S_{¡÷OAC}^2={S_{¡÷HAC}}•{S_{¡÷BAC}}$£¬$S_{¡÷OBC}^2={S_{¡÷HBC}}•{S_{¡÷ABC}}$£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð £¨1£©Ö¤Ã÷£ºÓÉÌâÒâÖª£¬CC1¡ÎBB1£¬PM¡ÍBB1£¬PN¡ÍBB1£¬
¡àCC1¡ÍPM£¬CC1¡ÍPN£¬ÇÒPM¡ÉPN=P£¬
¡àCC1¡ÍÆ½ÃæPMN£¬MN?Æ½ÃæPMN£¬
¡àCC1¡ÍMN£»£¨4·Ö£©
£¨2£©½â£ºÔÚбÈýÀâÖùABC-A1B1C1ÖУ¬ÓÐ$S_{AB{B_1}{A_1}}^2=S_{BC{C_1}{B_1}}^2+S_{AC{C_1}{A_1}}^2-2S_{BC{C_1}{B_1}}^{\;}•S_{AC{C_1}{A_1}}^{\;}cos¦Á$
ÆäÖЦÁÎªÆ½ÃæCC1B1BÓëÆ½ÃæCC1A1AËù×é³ÉµÄ¶þÃæ½Ç£®£¨7·Ö£©
¡ßCC1¡ÍÆ½ÃæPMN£¬¡àÉÏÊöµÄ¶þÃæ½ÇΪ¡ÏMNP£¬
ÔÚ¡÷PMNÖУ¬PM2=PN2+MN2-2PN•MNcos¡ÏMNP
¡àPM2•CC12=PN2•CC12+MN2•CC12-2£¨PN•CC1£©•£¨MN•CC1£©cos¡ÏMNP£¬
¡ß${S}_{BC{C}_{1}{B}_{1}}$=PN•CC1£¬${S}_{AC{C}_{1}{A}_{1}}$=MN•CC1£¬${S}_{AB{B}_{1}{A}_{1}}$=PM•BB1£¬
¡àÓÐ$S_{AB{B_1}{A_1}}^2=S_{BC{C_1}{B_1}}^2+S_{AC{C_1}{A_1}}^2-2S_{BC{C_1}{B_1}}^{\;}•S_{AC{C_1}{A_1}}^{\;}cos¦Á$£®£¨10·Ö£©
£¨3£©¿Õ¼ä¹´¹É¶¨ÀíµÄ²ÂÏ룺
ÒÑÖªËÄÃæÌåO-ABCµÄÈýÌõ²àÀâOA¡¢OB¡¢OCÁ½Á½´¹Ö±£¬ÔòÓÐ$S_{¡÷OAB}^2+S_{¡÷OAC}^2+S_{¡÷OBC}^2=S_{¡÷ABC}^2$£¨14·Ö£©
Ö¤Ã÷£º×÷OH¡ÍÆ½ÃæABC£¬´¹×ãΪH£¬Ò×µÃHΪ¡÷ABCµÄ´¹ÐÄ£®
Á¬½áCH²¢ÑÓ³¤½»ABÓÚE£¬Á¬½áOE£¬ÔòÓÐOE¡ÍAB£®
ÔÚ¡÷OABÖУ¬${S_{¡÷OAB}}=\frac{1}{2}AB•OE⇒S_{¡÷OAB}^2=\frac{1}{4}A{B^2}•O{E^2}$
ÔÚRt¡÷EOCÖУ¬OE2=EH•EC£¬
¡à$S_{¡÷OAB}^2=\frac{1}{4}A{B^2}•£¨EH•EC£©=£¨\frac{1}{2}AB•EH£©•£¨\frac{1}{2}AB•EC£©={S_{¡÷HAB}}•{S_{¡÷CAB}}$
ͬÀí£¬$S_{¡÷OAC}^2={S_{¡÷HAC}}•{S_{¡÷BAC}}$£¬$S_{¡÷OBC}^2={S_{¡÷HBC}}•{S_{¡÷ABC}}$
ÓÚÊÇ$S_{¡÷OAB}^2+S_{¡÷OAC}^2+S_{¡÷OBC}^2=£¨{S_{¡÷HAB}}+{S_{¡÷HAC}}+{S_{¡÷HBC}}£©•{S_{¡÷ABC}}=S_{¡÷ABC}^2$£¨18·Ö£©

µãÆÀ ±¾Ì⿼²éÏßÃæ´¹Ö±¹ØÏµµÄÏ໥ת»¯£¬»¹¿¼²éÁËÀà±ÈÍÆÀí£¬Ö¤Ã÷½áÂÛʱÀûÓÃÓàÏÒ¶¨Àí£¬¼ÓÉÏÊʵ±µÄ±äÐÎÖ¤³ö½áÂÛ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø