题目内容

已知函数f(x)=
12
x2+lnx
(1)求f(x)在区间[1,e]上的最大值与最小值;
(2)已知直线l:y=2x+a与函数f(x)的图象相切,求切点的坐标及a的值.
分析:(1)求出函数f(x)导数f′(x),判断出f′(x)=x+
1
x
>0在区间[1,e]上恒成立,得到f(x)在区间[1,e]上递增,进一步求出f(x)在区间[1,e]上的最大值与最小值;
(2)令f′(x)=2求得x=1将x=1代入f(x)=
1
2
x2+lnx得到切点坐标为(1,
1
2
);将切点坐标代入直线方程求得a的值
解答:解:(1)对函数f(x)求导数得:f′(x)=x+
1
x

因为f′(x)=x+
1
x
>0在区间[1,e]上恒成立,
所以f(x)在区间[1,e]上递增,
所以当x=1时,f(x)有最小值为f(1)=
1
2
;当x=e时,f(x)有最大值f(e)=
1
2
e2+1

(2)由题意得f′(x)=2即f′(x)=x+
1
x
=2解得x=1
将x=1代入f(x)=
1
2
x2+lnx得f(1)=
1
2
即切点坐标为(1,
1
2
);
将切点坐标(1,
1
2
)代入直线l:y=2x+a得a=-
3
2

故切点坐标为(1,
1
2
);a=-
3
2
点评:本题考查利用导函数的符号判断函数的单调性;考查函数在切点处的导数值为切线的斜率,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网