题目内容

数列{an}的前n项和记为Sn,数列{}是首项为2,公比也为2的等比数列.

(1)求an;

(2)若数列{}的前n项和不小于100,问此数列最少有多少项?

解:(1)由题意=2·2n-1=2n,

∴Sn=n·2n.                                                                

当n≥2时,an=Sn-Sn-1=n·2n-(n-1)2n-1=(n+1)2n-1,                                    

又当n=1时,a1=S1=2,适合上式,

∴an=(n+1)2n-1.                                                               

(2)∵=,

∴数列{}是首项为1,公差为的等差数列,                                

其前n项和为n+n(n-1),

故n+n(n-1)≥100,                                                        

n2+n≥200,得(n+)2≥200+,

满足它的最小整数是14,即此数列最少有14项.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网