题目内容

设函数f(x)=
1
3
x3-
a
2
x2+bx+c
,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,确定b、c的值.
由f(x)=
1
3
x3-
a
2
x2+bx+c
得:
f(0)=c,f′(x)=x2-ax+b,f′(0)=b.
又由曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,
得到f(0)=1,f′(0)=0.
故b=0,c=1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网