题目内容
若函数f(x)=x+asinx在R上递增,则实数a的取值范围为______.
∵f′(x)=1+acosx,
∴要使函数f(x)=x+asinx在R上递增,则1+acosx≥0对任意实数x都成立.
∵-1≤cosx≤1,
①当a>0时-a≤acosx≤a,
∴-a≥-1,∴0<a≤1;
②当a=0时适合;
③当a<0时,a≤acosx≤-a,
∴a≥-1,
∴-1≤a<0.
综上,-1≤a≤1.
故答案为:[-1,1]
∴要使函数f(x)=x+asinx在R上递增,则1+acosx≥0对任意实数x都成立.
∵-1≤cosx≤1,
①当a>0时-a≤acosx≤a,
∴-a≥-1,∴0<a≤1;
②当a=0时适合;
③当a<0时,a≤acosx≤-a,
∴a≥-1,
∴-1≤a<0.
综上,-1≤a≤1.
故答案为:[-1,1]
练习册系列答案
相关题目
若函数f(x)(x∈R)为奇函数,且存在反函数f-1(x)(与f(x)不同),F(x)=
,则下列关于函数F(x)的奇偶性的说法中正确的是( )
| 2f(x)-2f-1(x) |
| 2f(x)+2f-1(x) |
| A、F(x)是奇函数非偶函数 |
| B、F(x)是偶函数非奇函数 |
| C、F(x)既是奇函数又是偶函数 |
| D、F(x)既非奇函数又非偶函数 |