题目内容
已知函数f(x)=ln
-ax2+x(a>0).
(I)讨论f(x)的单调性;
(II)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3-2ln2.
| 1 | x |
(I)讨论f(x)的单调性;
(II)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3-2ln2.
分析:(I)先求出f(x)的定义域,对f(x)进行求导,求出f(x)的导数,令f′(x)=0,求出极值点,利用导数研究函数的单调性;
(II)根据第一问知道函数的单调性,可得方程f′(x)=0的两个根为x1,x2,代入f(x1)+f(x2),对其进行化简,可以求证f(x1)+f(x2)的最小值大于3-2ln2即可;
(II)根据第一问知道函数的单调性,可得方程f′(x)=0的两个根为x1,x2,代入f(x1)+f(x2),对其进行化简,可以求证f(x1)+f(x2)的最小值大于3-2ln2即可;
解答:解:(I)函数f(x)的定义域为(0,-∞),
f′(x)=-
-2ax+1=
a>0,设g(x)=-2ax2+x-1,△=1-8a,
(1)当a≥
,△≤0,g(x)≤0,
∴f′(x)≤0,函数f(x)在(0,+∞)上递减,
(2)当0<a<
时,△>0,f′(x)=0可得x1=
,x2=
,
若f′(x)>0可得x1<x<x2,f(x)为增函数,
若f′(x)<0,可得0<x<x1或x>x2,f(x)为减函数,
∴函数f(x)的减区间为(0,x1),(x2,+∞);增区间为(x1,x2);
(II)由(I)当0<a<
,函数f(x)有两个极值点x1,x2,
∴x1+x2=
,x1x2=
,
f(x1)+f(x2)=-lnx1-ax12+x1-lnx2-ax22+x2
=-ln(x1x2)-a(x12+x22)+(x1+x2)=-ln(x1x2)-a(x1+x2)2+2ax1x2+(x1+x2)
=-ln
-a×
+2a×
=ln(2a)+
+1=lna+
+ln2+1
设h(a)=lna+
+ln2+1,
h′(a)=
-
=
<0(0<a<
),
所以h(a)在(0,
)上递减,
h(a)>h(
)=ln
+
+ln2+1=3-2ln2,
所以f(x1)+f(x2)>3-2ln2;
f′(x)=-
| 1 |
| x |
| -2ax2+x-1 |
| x |
a>0,设g(x)=-2ax2+x-1,△=1-8a,
(1)当a≥
| 1 |
| 8 |
∴f′(x)≤0,函数f(x)在(0,+∞)上递减,
(2)当0<a<
| 1 |
| 8 |
1-
| ||
| 4a |
1+
| ||
| 4a |
若f′(x)>0可得x1<x<x2,f(x)为增函数,
若f′(x)<0,可得0<x<x1或x>x2,f(x)为减函数,
∴函数f(x)的减区间为(0,x1),(x2,+∞);增区间为(x1,x2);
(II)由(I)当0<a<
| 1 |
| 8 |
∴x1+x2=
| 1 |
| 2a |
| 1 |
| 2a |
f(x1)+f(x2)=-lnx1-ax12+x1-lnx2-ax22+x2
=-ln(x1x2)-a(x12+x22)+(x1+x2)=-ln(x1x2)-a(x1+x2)2+2ax1x2+(x1+x2)
=-ln
| 1 |
| 2a |
| 1 |
| 4a2 |
| 1 |
| 2a |
| 1 |
| 4a |
| 1 |
| 4a |
设h(a)=lna+
| 1 |
| 4a |
h′(a)=
| 1 |
| a |
| 1 |
| 4a2 |
| 4a-1 |
| 4a2 |
| 1 |
| 8 |
所以h(a)在(0,
| 1 |
| 8 |
h(a)>h(
| 1 |
| 8 |
| 1 |
| 8 |
| 1 | ||
4×
|
所以f(x1)+f(x2)>3-2ln2;
点评:此题主要考查利用导数研究函数的最值问题及其应用,第二问是一道证明题难度比较大,考查了学生的计算能力,是一道中档题;
练习册系列答案
相关题目