题目内容

已知等差数列{an}的公差d大于0,且a2,a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-.

(1)求数列{an}、{bn}的通项公式;

(2)设数列{an}的前n项和为Sn,试比较与Sn+1的大小,并说明理由.

(1)an=2n-1,bn=(2)n≥4时,>Sn+1.


解析:

1)由已知得,

又∵{an}的公差大于0,∴a5>a2,∴a2=3,a5=9.

∴d= ==2,a1=1.∴an=2n-1.                                                              2分

∵Tn=1-bn,∴b1=

当n≥2时,Tn-1=1-bn-1,

∴bn=Tn-Tn-1=1-bn-(1-bn-1),

化简,得bn=bn-1,

∴{bn}是首项为,公比为的等比数列,

即bn=·=,                                                                                               4分

∴an=2n-1,bn=.                                                                                                     5分

(2)∵Sn==n2,

∴Sn+1=(n+1)2=.                                                                                      6分

以下比较与Sn+1的大小:

当n=1时,=,S2=4,∴<S2,

当n=2时,=,S3=9,∴<S3,

当n=3时,=,S4=16,∴<S4,

当n=4时,=,S5=25,∴>S5.

猜想:n≥4时,>Sn+1.                                                                                       8分

下面用数学归纳法证明:

①当n=4时,已证.

②假设当n=k (k∈N*,k≥4)时,>Sk+1,即>(k+1)2.

那么n=k+1时,

==3·>3(k+1)2=3k2+6k+3

=(k2+4k+4)+2k2+2k-1>[(k+1)+1]2

=S(k+1)+1,

∴n=k+1时,>Sn+1也成立.                                                                               11分

由①②可知n∈N*,n≥4时,>Sn+1都成立.                                                          14分

综上所述,当n=1,2,3时,<Sn+1,

当n≥4时,>Sn+1.                                                                                               16分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网