题目内容

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点

(Ⅰ)证明:BC1//平面A1CD;

(Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.

 

【答案】

(Ⅰ)详见解析;(Ⅱ)三棱锥C一A1DE的体积

【解析】

试题分析:(Ⅰ)证明:BC1//平面A1CD,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,注意到D,分别是AB,的中点,可考虑利用三角形的中位线平行,连结于点F,则F为中点,连结DF,则∥DF,从而可证;(Ⅱ)求三棱锥C一A1DE的体积.求体积,关键是找高,由已知=2,,可知三角形是等腰直角三角形,又因为是直三棱柱,则即为高,有平面几何知识可得是直角三角形,可求得面积,从而可得体积.

试题解析:(Ⅰ)连结于点F,则F为中点,又D是AB中点,连结DF,则∥DF

因为所以∥平面

(Ⅱ)因为是直三棱柱,所以,,由已知AC=CB,D为AB的中点,所以,又,于是.由=2,

, ,,E=3,

,,所以  (12分)

考点:线面平行的判定,几何体的体积.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网