题目内容
数列{an}的前n项和为Sn,且Sn=n2+2n(其中n∈N*).
(1)求数列{an}的通项公式an;
(2)设bn=an•23n-3,求数列{bn}的前n项的和.
(1)求数列{an}的通项公式an;
(2)设bn=an•23n-3,求数列{bn}的前n项的和.
分析:(1)①当n=1时,a1=S1;②当n≥2时,an=Sn-Sn-1.即可得出an.
(2)利用“错位相减法”即可得出.
(2)利用“错位相减法”即可得出.
解答:解:(1)①当n=1时,a1=S1=1+2=3;
②当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.
上式对于n=1时也成立.
综上:an=2n+1.
(2)由题意得:bn=(2n+1)•23n-3=(2n+1)•8n-1.
设数列{bn}的前n项的和为Tn.
则Tn=3×1+5×8+7×82+…+(2n+1)•8n-1.
∴8Tn=3×8+5×82+…+(2n-1)•8n-1+(2n+1)•8n,
两式相减得-7Tn=3+2×8+2×82+…+2×8n-1-(2n+1)•8n
=1+2×(1+8+82+…+8n-1)-(2n+1)•8n
=1+2×
-(2n+1)•8n=1+
(8n-1)-(2n+1)•8n
=
-
•8n.
∴Tn=
.
②当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.
上式对于n=1时也成立.
综上:an=2n+1.
(2)由题意得:bn=(2n+1)•23n-3=(2n+1)•8n-1.
设数列{bn}的前n项的和为Tn.
则Tn=3×1+5×8+7×82+…+(2n+1)•8n-1.
∴8Tn=3×8+5×82+…+(2n-1)•8n-1+(2n+1)•8n,
两式相减得-7Tn=3+2×8+2×82+…+2×8n-1-(2n+1)•8n
=1+2×(1+8+82+…+8n-1)-(2n+1)•8n
=1+2×
| 8n-1 |
| 8-1 |
| 2 |
| 7 |
=
| 5 |
| 7 |
| 14n+5 |
| 7 |
∴Tn=
| (14n+5)•8n-5 |
| 49 |
点评:本题考查了an=
、“错位相减法”、等比数列的前n项和公式等基础知识与基本方法,属于中档题.
|
练习册系列答案
相关题目