题目内容

设数列{an}的前n项和为Sn,满足Sn=an+1-2n+1+1,(n∈N*),且a1=1.
(Ⅰ)求a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设数列{bn}的前n项和为Tn,且bn=
an+1-1
an+1+2
,证明:对一切正整数n,都有:n-
3
2
Tn<n-
1
4
分析:(Ⅰ)在给出的递推式中,分别取n=1,2,把a1=1代入即可求得a2,a3的值;
(Ⅱ)根据给出的递推式,取n=n-1可得另一递推式,两式作差后可得an+1=2an+2n(n≥1),把此等式两边同时除以2n,得到新数列{
an
2n-1
}
是以1为首项,1为公差的等差数列,写出其通项公式,则数列{an}的通项公式可求;
(Ⅲ)把(Ⅱ)中求出的an代入bn=
an+1-1
an+1+2
,整理后得bn=
(n+1)•2n-1
(n+1)•2n+2
=1-
3
(n+1)•2n+2
,把该式放大缩小后利用等比数列的求和公式可证明n-
3
2
Tn<n-
1
4
解答:(Ⅰ)解:∵Sn=an+1-2n+1+1(n∈N*),且a1=1,
S1=a2-22+1a1=a2-22+1,∴a2=4,
S2=a3-23+1a1+a2=a3-23+1,∴a3=12;
(Ⅱ)解:由Sn=an+1-2n+1+1,(n∈N*)①,
Sn-1=an-2n+1,(n∈N*,n≥2)②,
①-②得:an=an+1-an-2n,即an+1=2an+2n(n≥2)
检验知a1=1,a2=4满足an+1=2an+2n(n≥2)
an+1=2an+2n(n≥1)
变形可得
an+1
2n
=
an
2n-1
+1(n≥1)

a1
21-1
=
1
20
=1

∴数列{
an
2n-1
}
是以1为首项,1为公差的等差数列.
an
2n-1
=1+(n-1)×1=n

an=n•2n-1(n≥1)
(Ⅲ)证明:由(Ⅱ)知an=n•2n-1(n≥1),代入bn=
an+1-1
an+1+2

得bn=
(n+1)•2n-1
(n+1)•2n+2
=1-
3
(n+1)•2n+2

22n+1-(n+1)•2n-2=(2n+1-n-1-
1
2n-1
)2n
>0,
∴(n+1)•2n+2<22n+1
又∵2n+1<(n+1)•2n+2,
∴2n+1<(n+1)•2n+2<22n+1
3
22n+1
3
(n+1)•2n+2
3
2n+1

1-
3
2n+1
<1-
3
(n+1)•2n+2
<1-
3
22n+1

1-
3
2n+1
bn<1-
3
22n+1

n-(
3
22
+
3
23
+…+
3
2n+1
)<Tn<n-(
3
23
+
3
25
+…+
3
22n+1
)

n-3×
1
4
[1-(
1
2
)
n
]
1-
1
2
Tn<n-3×
1
8
[1-(
1
4
)
n
]
1-
1
4

n-
3
2
[1-(
1
2
)n]<Tn<n-
1
2
[1-(
1
4
)n]

n-
3
2
Tn<n-
1
2
<n-
1
4
点评:本题考查了由递推式确定等比关系,考查了等比数列的前n项和公式,考查了利用放缩法证明不等式,解答此题的关键是不等式的证明,对数列{bn}通项的放缩体现了学生观察问题和分析问题的能力,此题是有一定难度题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网