ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©µÄͼÏñÔÚ[a£¬b]ÉÏÁ¬Ðø²»¶Ï£¬¶¨Ò壺
£¬
£¬ÆäÖÐmin{f£¨x£©|x¡ÊD}±íʾº¯Êýf£¨x£©ÔÚDÉϵÄ×îСֵ£¬max{f£¨x£©|x¡ÊD}±íʾº¯Êýf£¨x£©ÔÚDÉϵÄ×î´óÖµ£¬Èô´æÔÚ×îСÕýÕûÊýk£¬Ê¹µÃf2£¨x£©-f1£¨x£©¡Ük£¨x-a£©£¬¶ÔÈÎÒâµÄx¡Ê[a£¬b]³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©Îª[a£¬b]Éϵġ°k½×ÊÕËõº¯Êý¡±£®
£¨1£©Èôf£¨x£©=cosx£¬x¡Ê[0£¬¦Ð]£¬ÊÔд³öf1£¨x£©£¬f2£¨x£©µÄ±í´ïʽ£»
£¨2£©ÒÑÖªº¯Êýf£¨x£©=x2£¬x¡Ê[-1£¬4]£¬ÊÔÅжÏf£¨x£©ÊÇ·ñΪ[-1£¬4]Éϵġ°k½×ÊÕËõº¯Êý¡±£¬Èç¹ûÊÇ£¬Çó³ö¶ÔÓ¦µÄk£¬Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÒÑÖª
£¬º¯Êýf£¨x£©=-x3+3x2ÊÇ[0£¬b]ÉϵÄ2½×ÊÕËõº¯Êý£¬ÇóbµÄȡֵ·¶Î§
£¨1£©Èôf£¨x£©=cosx£¬x¡Ê[0£¬¦Ð]£¬ÊÔд³öf1£¨x£©£¬f2£¨x£©µÄ±í´ïʽ£»
£¨2£©ÒÑÖªº¯Êýf£¨x£©=x2£¬x¡Ê[-1£¬4]£¬ÊÔÅжÏf£¨x£©ÊÇ·ñΪ[-1£¬4]Éϵġ°k½×ÊÕËõº¯Êý¡±£¬Èç¹ûÊÇ£¬Çó³ö¶ÔÓ¦µÄk£¬Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÒÑÖª
½â£º£¨1 £©ÓÉÌâÒâ¿ÉµÃ£º
£¬
¡£
£¨2£©
£¬
£¬
µ±
ʱ£¬
¡à k¡Ý1-x,k¡Ý2
µ±
ʱ£¬1¡Ük(x+1),¡àk¡Ý
,¡àk¡Ý1
µ±
ʱ£¬x2¡Ük(x+1)¡àk¡Ý
£¬
¡£
¼´´æÔÚ
£¬Ê¹µÃ
ÊÇ[-1,4]Éϵġ°4½×ÊÕËõº¯Êý¡±¡£
£¨3£©
£¬Áî
µÃ
»ò
¡£
µÄ±ä»¯Çé¿öÈçÏ£º![]()
Áîf£¨x£©=0µÃx=0»òx=3¡£
£¨i£©µ±b¡Ü2ʱ£¬f£¨x£©=ÔÚ[0,b]Éϵ¥µ÷µÝÔö£¬
Òò´Ë£¬
£¬
¡£
ÒòΪ
ÊÇ[0,b]Éϵġ±£¬
ËùÒÔ£¬¢Ù
¶Ôx¡Ê[0,b]ºã³ÉÁ¢£»
¢Ú´æÔÚx¡Ê[0,b]£¬Ê¹µÃ
³ÉÁ¢¡£
¢Ù¼´£º
¶Ôx¡Ê[0,b]ºã³ÉÁ¢£¬
ÓÉ
½âµÃ0¡Üx¡Ü1»òx¡Ý2¡£
Ҫʹ
¶Ôx¡Ê[0,b]ºã³ÉÁ¢£¬ÐèÇÒÖ»Ðè
¡£
¢Ú¼´£º´æÔÚx¡Ê[0,b]£¬Ê¹µÃ
³ÉÁ¢¡£
ÓÉ
½âµÃ
»ò
¡£
ËùÒÔ£¬Ö»Ðè
¡£
×ۺϢ٢ڿɵÃ
¡£
£¨i i £©µ±
ʱ£¬f£¨x£©ÔÚ[0,2]Éϵ¥µ÷µÝÔö£¬ÔÚ[2,b]Éϵ¥µ÷µÝ¼õ£¬
Òò´Ë£¬
£¬
£¬
£¬
ÏÔÈ»µ±x=0ʱ£¬
²»³ÉÁ¢¡£
£¨i i i£©µ±
ʱ£¬f£¨x£©ÔÚ[0,2]Éϵ¥µ÷µÝÔö£¬ÔÚ[2,b]Éϵ¥µ÷µÝ¼õ£¬
Òò´Ë£¬
£¬
£¬
£¬
ÏÔÈ»µ±x=0ʱ£¬
²»³ÉÁ¢¡£
×ۺϣ¨i£©£¨i i£©£¨i i i£©¿ÉµÃ£º
¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=2¶Ô³Æ£¬ÇÒµ±x¡Ù2ʱÆäµ¼º¯Êýf¡ä£¨x£©Âú×ãxf¡ä£¨x£©£¾2f¡ä£¨x£©£¬Èô2£¼a£¼4£¬ÔòÏÂÁбíʾ´óС¹ØÏµµÄʽ×ÓÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢f£¨2a£©£¼f£¨3£©£¼f£¨log2a£© | B¡¢f(3)£¼f(log2a)£¼f(2a) | C¡¢f(log2a)£¼f(3)£¼f(2a) | D¡¢f(log2a)£¼f(2a)£¼f(3) |