题目内容
已知数列{an}:满足:a1=3,an+1=
,n∈N*,记bn=
.
(I) 求证:数列{bn}是等比数列;
(II) 若an≤t•4n对任意n∈N*恒成立,求t的取值范围;
(III)证明:a1+a2+…an>2n+
.
| 3an+2 |
| an+2 |
| an-2 |
| an+1 |
(I) 求证:数列{bn}是等比数列;
(II) 若an≤t•4n对任意n∈N*恒成立,求t的取值范围;
(III)证明:a1+a2+…an>2n+
| 3 |
| 4 |
分析:(Ⅰ)要证数列{bn}是等比数列,需求得bn+1=
,利用等比数列的定义即可证明;
(Ⅱ)由bn=
=
可求得an=
,结合条件an≤t•4n即可求得t的取值范围;
(Ⅲ)由an=
=2+
>2+
,利用累加法即可证得结论.
| an+1-2 |
| an+1+1 |
(Ⅱ)由bn=
| an-2 |
| an+1 |
| 1 |
| 4n |
| 1+2•4n |
| 4n-1 |
(Ⅲ)由an=
| 1+2•4n |
| 4n-1 |
| 3 |
| 4n-1 |
| 3 |
| 4n |
解答:证明:(Ⅰ)由an+1=
得,an+1-2=
-2=
①,
an+1+1=
+1=
②(2分)
∴
得:
=
•
,即bn+1=
bn,且b1=
=
,
∴数列{bn}是首项为
,公比为
的等比数列.(4分)
(Ⅱ)由(Ⅰ)可知bn=
•(
)n-1=
=
∴an=
,
由an≤t•4n得t≥
=
(6分)
∵
是关于n的减函数,
∴
≤
=
,
∴t≥
(9分)
(Ⅲ)∵an=
=2+
>2+
,(11分)
∴a1+a2+…+an>(2+
)+(2+
)+…(2+
)
=2n+(
+
+…+
)
=2n+
•
=2n+1-(
)n>2n+
.得证(14分)
| 3an+2 |
| an+2 |
| 3an+2 |
| an+2 |
| an-2 |
| an+2 |
an+1+1=
| 3an+2 |
| an+2 |
| 4(an+1) |
| an+2 |
∴
| ① |
| ② |
| an+1-2 |
| an+1+1 |
| 1 |
| 4 |
| an-2 |
| an+1 |
| 1 |
| 4 |
| a1-2 |
| a1+1 |
| 1 |
| 4 |
∴数列{bn}是首项为
| 1 |
| 4 |
| 1 |
| 4 |
(Ⅱ)由(Ⅰ)可知bn=
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4n |
| an-2 |
| an+1 |
∴an=
| 1+2•4n |
| 4n-1 |
由an≤t•4n得t≥
| 1+2•4n |
| (4n-1)4n |
2+
| ||
| 4n-1 |
∵
2+
| ||
| 4n-1 |
∴
2+
| ||
| 4n-1 |
2+
| ||
| 4-1 |
| 3 |
| 4 |
∴t≥
| 3 |
| 4 |
(Ⅲ)∵an=
| 1+2•4n |
| 4n-1 |
| 3 |
| 4n-1 |
| 3 |
| 4n |
∴a1+a2+…+an>(2+
| 3 |
| 4 |
| 3 |
| 42 |
| 3 |
| 4n |
=2n+(
| 3 |
| 4 |
| 3 |
| 42 |
| 3 |
| 4n |
=2n+
| 3 |
| 4 |
1-(
| ||
1-
|
| 1 |
| 4 |
| 3 |
| 4 |
点评:本题考查数列与不等式的综合,着重考查等比关系的确定,恒成立问题的分析与应用,突出转化思想与放缩法、累加法的考查,属于难题.
练习册系列答案
相关题目