题目内容
设S1=1+
+
,S2=1+
+
,S3=1+
+
,…,Sn=1+
+
,设S=
+
+…+
.
(1)设Tn=S,求Tn(用含n的代数式表示)
(2)求使Tn≥2011的最小正整数值.
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| S1 |
| S2 |
| Sn |
(1)设Tn=S,求Tn(用含n的代数式表示)
(2)求使Tn≥2011的最小正整数值.
分析:(1)由Sn=1+
+
=
,知
=
=
=1+
-
,由此能求出Tn=n+1-
.
(2)由Tn=n+1-
≥2011,知
=
≥2011,由n∈N*,知n2+2n≥2011n+2011,由此能求出n的最小值.
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| [n(n+1)+1]2 |
| n2•(n+1)2 |
| Sn |
|
| n(n+1)+1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
(2)由Tn=n+1-
| 1 |
| n+1 |
| (n+1)2-1 |
| n+1 |
| n2+2n |
| n+1 |
解答:解:(1)∵Sn=1+
+
=
=
,
∴
=
=
=1+
-
,
所以
=1+1-
,
=1+
-
,
=1+
-
,
…
=1+
-
,
∴S=
+
+…+
=1+1-
+1+
-
+1+
-
+…+1+
-
=n+[(1-
)+(
-
)+…+(
-
)]=n+1-
.
∵Tn=S,∴Tn=n+1-
.
(2)∵Tn=n+1-
≥2011
∴
=
≥2011,
∵n∈N*,∴n2+2n≥2011n+2011,
即n2-2009n-2011≥0,
解得n≥
,或n≤
.
∵n∈N*,∴n的最小值是2008.
| 1 |
| n2 |
| 1 |
| (n+1)2 |
=
| n4+2n3+3n2+2n+1 |
| n2•(n+1)2 |
=
| [n(n+1)+1]2 |
| n2•(n+1)2 |
∴
| Sn |
|
| n(n+1)+1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
所以
| S1 |
| 1 |
| 2 |
| S2 |
| 1 |
| 2 |
| 1 |
| 3 |
| S3 |
| 1 |
| 3 |
| 1 |
| 4 |
…
| Sn |
| 1 |
| n |
| 1 |
| n+1 |
∴S=
| S1 |
| S2 |
| Sn |
=1+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=n+[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
∵Tn=S,∴Tn=n+1-
| 1 |
| n+1 |
(2)∵Tn=n+1-
| 1 |
| n+1 |
∴
| (n+1)2-1 |
| n+1 |
| n2+2n |
| n+1 |
∵n∈N*,∴n2+2n≥2011n+2011,
即n2-2009n-2011≥0,
解得n≥
2009+
| ||
| 2 |
2009-
| ||
| 2 |
∵n∈N*,∴n的最小值是2008.
点评:本题考查数列与不等式的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目