题目内容
已知数列{an}的通项公式为an=n•2n,则其前n项和Sn=
(n-1)•2n+1+2
(n-1)•2n+1+2
.分析:利用错位相减法可求得答案.
解答:解:由an=n•2n得:Sn=2+2•22+3•23+…+n•2n①,
2Sn=22+2•23+3•24+…+n•2n+1②,
①-②得,-Sn=21+22+23+…+2n-n•2n+1
=
-n•2n+1
=2n+1-2-n•2n+1
=(1-n)•2n+1-2
∴Sn=(n-1)•2n+1+2.
故答案为:(n-1)•2n+1+2.
2Sn=22+2•23+3•24+…+n•2n+1②,
①-②得,-Sn=21+22+23+…+2n-n•2n+1
=
| 2(1-2n) |
| 1-2 |
=2n+1-2-n•2n+1
=(1-n)•2n+1-2
∴Sn=(n-1)•2n+1+2.
故答案为:(n-1)•2n+1+2.
点评:本题考查数列求和,属中档题,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|