题目内容
设数列{an}具有以下性质:①a1=1;②当n∈N*时,an≤an+1.
(Ⅰ)请给出一个具有这种性质的数列,使得不等式
+
+
+…+
<
对于任意的n∈N*都成立,并对你给出的结果进行验证(或证明);
(Ⅱ)若bn=(1-
)
,其中n∈N*,且记数列{bn}的前n项和Bn,证明:0≤Bn<2.
(Ⅰ)请给出一个具有这种性质的数列,使得不等式
| ||
| a2 |
| ||
| a3 |
| ||
| a4 |
| ||
| an+1 |
| 3 |
| 2 |
(Ⅱ)若bn=(1-
| an |
| an+1 |
| 1 | ||
|
分析:(I)令
=1,
=
,
=
,…,
=
,则无穷数列{an}可由a1=1,an+1=3n-1an2(n≥1)给出,显然,该数列满足a1=1,an≤an+1(n∈N*),利用等比数列求和也满足条件;
(II)根据an≤an+1可得,∴bn≥0,则Bn=b1+b2+…+bn≥0,将bn=(1-
)
=
(
-
)转化成
(
-
)(
+
)≤2(
-
),然后叠加可得结论.
| ||
| a2 |
| ||
| a3 |
| 1 |
| 3 |
| ||
| a4 |
| 1 |
| 32 |
| ||
| an+1 |
| 1 |
| 3n-1 |
(II)根据an≤an+1可得,∴bn≥0,则Bn=b1+b2+…+bn≥0,将bn=(1-
| an |
| an+1 |
| 1 | ||
|
| an | ||
|
| 1 |
| an |
| 1 |
| an+1 |
(
| 1 | ||
|
| 1 | ||
|
|
| an |
| an+1 |
| 1 | ||
|
| 1 | ||
|
解答:(Ⅰ)解:令
=1,
=
,
=
,…,
=
,
则无穷数列{an}可由a1=1,an+1=3n-1an2(n≥1)给出.
显然,该数列满足a1=1,an≤an+1(n∈N*),
且
+
+…+
=1+
+…+
=
(1-
)<
------------------(6分)
(Ⅱ)证明∵bn=(1-
)
,an≤an+1,∴bn≥0.
∴Bn=b1+b2+…+bn≥0.-------------------------(8分)
又bn=(1-
)
=
(
-
)
=
(
-
)(
+
)
=(
-
)(
+
)≤2(
-
).
∴Bn≤2(
-
)<
=2.
∴0≤Bn<2.--------------------------------(14分)
| ||
| a2 |
| ||
| a3 |
| 1 |
| 3 |
| ||
| a4 |
| 1 |
| 32 |
| ||
| an+1 |
| 1 |
| 3n-1 |
则无穷数列{an}可由a1=1,an+1=3n-1an2(n≥1)给出.
显然,该数列满足a1=1,an≤an+1(n∈N*),
且
| ||
| a2 |
| ||
| a3 |
| ||
| an+1 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 3 |
| 2 |
| 1 |
| 3n |
| 3 |
| 2 |
(Ⅱ)证明∵bn=(1-
| an |
| an+1 |
| 1 | ||
|
∴Bn=b1+b2+…+bn≥0.-------------------------(8分)
又bn=(1-
| an |
| an+1 |
| 1 | ||
|
| an | ||
|
| 1 |
| an |
| 1 |
| an+1 |
=
| an | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
=(
| 1 | ||
|
| 1 | ||
|
|
| an |
| an+1 |
| 1 | ||
|
| 1 | ||
|
∴Bn≤2(
| 1 | ||
|
| 1 | ||
|
| 2 | ||
|
∴0≤Bn<2.--------------------------------(14分)
点评:本题主要考查了数列与不等式的综合,以及数列的函数特性和求和,同时考查了转化的思想和计算能力,属于中档题.
练习册系列答案
相关题目