题目内容

设f0(x)=cosx,f1(x)=f0′(x),…,fn+1(x)=fn′(x),x∈N,则f2011(x)=(  )
分析:由已知,f0(x)=cosx,f1(x)=f0′(x)=-sinx,f2(x)=f1′(x)=-cosx,f3(x)=f2′(x)=sinx,f4(x)=f3′(x)=cosx,发现fn(x)以4为周期,结果循环出现,利用此规律将n=2011转化为n=3的情况求解.
解答:解:∵f0(x)=cosx,
∴f1(x)=f0′(x)=-sinx,
f2(x)=f1′(x)=-cosx,
f3(x)=f2′(x)=sinx,
f4(x)=f3′(x)=cosx

从第五项开始,fn(x)的解析式重复出现,每4次一循环.
∴f2011(x)=f4×502+3(x)=f3(x)=sinx,
故选C.
点评:本题考查函数求导运算,由于f2011(x)中下标数值2011较大,所以探究fn(x)的周期性成为必要与自然.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网