题目内容
(2013•眉山二模)已知数列{an}为等差数列,{an}的前n项和为Sn,a1+a3=
,S5=5
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=
,Tn=b1b2+b2b3+b3b4+…+bnbn+1,求Tn.
| 3 |
| 2 |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=
| 1 |
| 4 |
分析:(1)利用等差数列的通项公式即可得到a1与d,进而得到an;
(2)利用(1)及anbn=
即可得到bn,再利用裂项求和即可得到Tn.
(2)利用(1)及anbn=
| 1 |
| 4 |
解答:解:(1)由a1+a3=
,S5=5,得
解得a1=
,d=
.
∴an=
.
(2)∵an=
,∴bn=
,
∴bnbn+1=
=
-
,
∴Tn=b1b2+b2b3+b3b4+…+bnbn+1=(
-
)+(
-
)+…+(
-
)=
-
=
.
| 3 |
| 2 |
|
解得a1=
| 1 |
| 2 |
| 1 |
| 4 |
∴an=
| n+1 |
| 4 |
(2)∵an=
| n+1 |
| 4 |
| 1 |
| n+1 |
∴bnbn+1=
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=b1b2+b2b3+b3b4+…+bnbn+1=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
点评:熟练掌握等差数列的通项公式及其裂项求和是解题的关键.
练习册系列答案
相关题目