题目内容
已知数列{an}是首项为1的等差数列,若a2+1,a3+1,a5成等比数列.
(1)求数列{an}通项公式;
(2)设bn=
,求数列{bn}的前n项和Sn.
(1)求数列{an}通项公式;
(2)设bn=
| 1 |
| anan+1 |
(1)∵a2+1,a3+1,a5成等比数列.
∴(a3+1)2=a5•(a2+1)
即(2+2d)2=(1+4d)(2+d)
解可得,d=2,
∴an=1+2(n-1)=2n-1
(2)∵bn=
=
=
(
-
)
∴sn=
(1-
+
-
+…+
-
)
=
(1-
)=
∴(a3+1)2=a5•(a2+1)
即(2+2d)2=(1+4d)(2+d)
解可得,d=2,
∴an=1+2(n-1)=2n-1
(2)∵bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
练习册系列答案
相关题目