题目内容
在△ABC中,角A,B,C所对的边分别为a,b,c.已知m=(cos| 3A |
| 2 |
| 3A |
| 2 |
| A |
| 2 |
| A |
| 2 |
| 3 |
(1)求角A的大小;
(2)若|
| AC |
| AB |
| 3 |
| BC |
分析:(1)由|
+
| =
得
2+
2+2
•
=3整理可得cosA=
结合0<A<π可求A=
.
(2)由已知可得b+c=
a结合正弦定理可得,sinB+sinC=
sinA,从而有sinB+sin(
-B)=
×
,
sin(B+
)=
.由0<B<
可得
<B+
<
,结合正弦函数的性质可求B,进一步可求C,判断三角形的形状
| m |
| n |
| 3 |
| m |
| n |
| m |
| n |
| 1 |
| 2 |
| π |
| 3 |
(2)由已知可得b+c=
| 3 |
| 3 |
| 2π |
| 3 |
| 3 |
| ||
| 2 |
sin(B+
| π |
| 6 |
| ||
| 2 |
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
解答:解:(1)由|
+
| =
得
2+
2+2
•
=3
即1+1+2(cos
cos
+sin
sin
)=3,
∴cosA=
,∵0<A<π,∴A=
.
(2)∵|
|+|
|=
|
|,
∴b+c=
a,
由正弦定理可得,sinB+sinC=
sinA,
∴sinB+sin(
-B)=
×
,
即
sinB+
cosB=
,
∴sin(B+
)=
.
∵0<B<
,∴
<B+
<
,
∴B+
=
或
,故B=
或
.
当B=
时,C=
;当B=
时,C=
.
故△ABC是直角三角形.
| m |
| n |
| 3 |
| m |
| n |
| m |
| n |
即1+1+2(cos
| 3A |
| 2 |
| A |
| 2 |
| 3A |
| 2 |
| A |
| 2 |
∴cosA=
| 1 |
| 2 |
| π |
| 3 |
(2)∵|
| AC |
| AB |
| 3 |
| BC |
∴b+c=
| 3 |
由正弦定理可得,sinB+sinC=
| 3 |
∴sinB+sin(
| 2π |
| 3 |
| 3 |
| ||
| 2 |
即
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
∴sin(B+
| π |
| 6 |
| ||
| 2 |
∵0<B<
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴B+
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 6 |
| π |
| 2 |
当B=
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
故△ABC是直角三角形.
点评:本题主要考查了向量的向量的模的求解,向量数量积的运算,和角的三角函数及正弦定理的应用,由特殊角的三角函数值求解角等知识的综合运用,属于综合试题.
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |