搜索
题目内容
lo
g
3
4
27
3
+lg25+lg4+
7
lo
g
7
2
.
试题答案
相关练习册答案
分析:
利用对数的运算性质lgm
n
=nlgm;lgmn=lgm+lgn;
a
log
a
n
=n,计算可得答案
解答:
解:原式=log
3
4
27
-1+2lg5+2lg2+2=
1
4
×3-1+2+2=3
3
4
.
点评:
本题考查了对数的运算性质,计算要细心.
练习册系列答案
名师面对面小考满分策略系列答案
教材全解字词句篇系列答案
课时练全优达标测试卷系列答案
万唯中考试题研究系列答案
1课3练世界图书出版公司系列答案
学生用书系列答案
全优训练系列答案
语文阅读阶梯训练系列答案
巴蜀英才课课练与单元测试系列答案
听力特训营系列答案
相关题目
计算:
log
3
4
27
3
+lg25+2lg2+e
ln2
=
.
计算:
|-0.01
|
-
1
2
-(-
5
7
)
0
+
3
log
3
2
+(lg2
)
2
+lg2•lg5+lg5
.
对于任意实数x,[x]表示x的整数部分,即[x]是不超过x的最大整数.这个函数[x]叫做“取整函数”,则[lg1]+[lg2]+[lg3]+[lg4]+…+[lg2 013]=
4932
4932
.
计算下列各式的值:
(1)
1
2
lg
32
49
-
4
3
lg
8
+lg
245
;
(2)lg 5
2
+
2
3
lg 8+lg 5×lg 20+(lg 2)
2
;
(3)
lg
2
+lg3-lg
10
lg1.8
.
已知a为非零常数,函数
f(x)=alg
1-x
1+x
(-1<x<1)
满足f(lg0.5)=-1,则f(lg2)=
1
1
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案