题目内容
分析:设M的坐标为(x,y),欲求线段AB的中点M的轨迹方程,只须求出坐标x,y的关系式即可,由题意得2|PM|=|AB|,利用两点间的距离公式将点的坐标代入后化简即得M的轨迹方程.
解答:
解:设M的坐标为(x,y),
则A、B两点的坐标分别是(2x,0),(0,2y),连接PM,
∵l1⊥l2,∴2|PM|=|AB|.
而|PM|=
,
|AB|=
,
∴2
=
.
化简,得x+2y-5=0即为所求的轨迹方程.
则A、B两点的坐标分别是(2x,0),(0,2y),连接PM,
∵l1⊥l2,∴2|PM|=|AB|.
而|PM|=
| (x-2)2+(y-4)2 |
|AB|=
| (2x)2+(2y)2 |
∴2
| (x-2)2+(y-4)2 |
| 4x2+4y2 |
化简,得x+2y-5=0即为所求的轨迹方程.
点评:本题主要考查了轨迹方程、两条直线垂直与倾斜角、斜率的关系等知识,属于中档题.
练习册系列答案
相关题目